3D Gauss Filtering
using SSE

Progress report

vasko.anton@gmail.com

Content

m SSE

m Gauss3

m SSE optimization of gauss3
= Results

= Conclusion

Quick info about SSE

m Intel’'s extension to the CPU'’s Instruction
set

m Currently available also on AMD’s CPUs
m 8 registers 128 bit wide

= New Instructions for parallel calculations
(e.g. add, sub, mul, div, sqrt ...)

m Working with cache (prefetching, non-
temporal store/read)

Gauss3

m Gauss filter of length 3 (has 3 nonzero
coefficients), e.qg. for w=0.25

m Separable filter =>
m Filtering in 3 dimensions: X, Y and Z
s Symmetric filter [f,, f;, T,]=[fy, f;, ol

How Is It done In f3d

for each dimension D=X,Y,Z
for each slice S
for each line L (in dimension D) of slice S
{
copy line L to temporary buffer
filter line In temporary buffer
copy filtered line back

;

Possible optimizations

1. Gauss Is symmetric — we can save 3
multiplication for every filtered voxel:

To™%o + 117Xy + 1™X5 = 1™ (Xo+Xp) + 117X,

Make it as cache friendly as possible =>
avoid copying

Avoiding copying

m For X and Y direction — add additional line
m For Z direction — add additional slice

R RRERBRY

12021 |z2|z3|24 25|26 |27

Image plane

How does it work (1)

m Before filtering

How does It work (2)

m After filtering in X direction

How does it work (3)

m After filtering in Y direction

How does it work (4)

m After filtering in Z direction

Further optimizations

Filtering in X and Y direction can be done
IN one pass — reusing cache data

Neighboring voxels can be filtered In
parallel (using SSE)

Omitting assembler details © (see my
previous presentation)

Results

m Measured on Intel Pentium 4 1,6 GHz with
1 GB RAM

256x128x64

256X256%256

1024x512x64

non-opt

1,10s

8,30s

99,70s

SSE

0,03s

0,30s

3,20s

speedup

36,67

27,67

31,16

Practical limits

= Not general optimization of filtering —
currently there are optimized only gauss3,
gausss, gauss/

= Only floating-point data (or convert it on
the fly — it Is still faster and more precise!)

= Volume dimensions — multiple of 4
= Additional memory Is required —
3 lines/slice + 3 slices

Changes in f3d

= Not many
m hew raster - f3dSIMDRaster

m assembler implementation of gauss
filtering for gauss3, gaussS and gauss/

= changed f3dBand.cpp (gauss filtering)

Usage in f3d (old way)

f3dVolume* v;
v=f3dLoadRawVolume(filename);
v->gaussFilter(sigmax, sigmay, sigmaz);
v->save(filename);

Usage in f3d (new way)

f3dVolume* v;

v = f3dLoadSIMDVolume(filename);
v->gaussFilter(sigmax, sigmay, sigmaz);
v->save(filename);

Conclusion

= My Intention (due to motivation article) —
SSE can speedup things (theoretically

max 4 times) and assembler a litt

m [he praxis has shown that SSE s
things “only” 2-3 times

e bit

needs up

= The biggest impact (when processing

huge data) has the change of the
algorithm with cache optimization

In mind

Future work

optimization (for f3d) of:

gabor filtering

general filtering

converting routines

any other calculation expensive things

Thanks for your
attention !

vasko.anton@gmail.com

