
3D Gauss Filtering 3D Gauss Filtering
using SSEusing SSE

Progress reportProgress report

vaskovasko..antonanton@@gmailgmail.com.com

2

ContentContent

�� SSESSE

�� Gauss3Gauss3

�� SSE optimization of gauss3SSE optimization of gauss3

�� ResultsResults

�� ConclusionConclusion

3

Quick info about SSEQuick info about SSE

�� Intel’s extension to the CPU’s instruction Intel’s extension to the CPU’s instruction
setset

�� Currently available also on AMD’s CPUsCurrently available also on AMD’s CPUs

�� 8 registers 128 bit wide8 registers 128 bit wide

�� New instructions for parallel calculations New instructions for parallel calculations
(e.g. add, sub,(e.g. add, sub, mulmul, div, , div, sqrt sqrt …)…)

�� Working with cache (Working with cache (prefetchingprefetching, non, non--
temporal store/read)temporal store/read)

4

Gauss3 Gauss3

�� Gauss filter of length 3 (has 3 nonzero Gauss filter of length 3 (has 3 nonzero
coefficients), e.g. for w=0.25coefficients), e.g. for w=0.25

�� Separable filter =>Separable filter =>

�� Filtering in 3 dimensions: X, Y and ZFiltering in 3 dimensions: X, Y and Z

�� Symmetric filter [fSymmetric filter [f00, f, f11, f, f22]=[f]=[f00, f, f11, f, f00]]

5

How is it done in f3dHow is it done in f3d

for each dimension D=X,Y,Zfor each dimension D=X,Y,Z
for each slice Sfor each slice S

for each line L (in dimension D) of slice Sfor each line L (in dimension D) of slice S
{{

copy line L to temporary buffercopy line L to temporary buffer
filter line in temporary bufferfilter line in temporary buffer
copy filtered line backcopy filtered line back

}}

6

Possible optimizationsPossible optimizations

1.1. Gauss is symmetric Gauss is symmetric –– we can save 3 we can save 3
multiplication for every filtered multiplication for every filtered voxelvoxel::

ff00*x*x0 0 + f+ f11*x*x1 1 + f+ f00*x*x22 = f= f00*(x*(x00+x+x22) + f) + f11*x*x11

2.2. Make it as cache friendly as possible =>Make it as cache friendly as possible =>

avoid copyingavoid copying

7

Avoiding copyingAvoiding copying

�� For X and Y direction For X and Y direction –– add additional lineadd additional line

�� For Z direction For Z direction –– add additional sliceadd additional slice

8

How does it work (1)How does it work (1)

�� Before filteringBefore filtering

9

How does it work (2)How does it work (2)

�� After filtering in X directionAfter filtering in X direction

10

How does it work (3)How does it work (3)

�� After filtering in Y directionAfter filtering in Y direction

11

How does it work (4)How does it work (4)

�� After filtering in Z directionAfter filtering in Z direction

12

Further optimizations Further optimizations

�� Filtering in X and Y direction can be done Filtering in X and Y direction can be done
in one pass in one pass –– reusing cache datareusing cache data

�� Neighboring Neighboring voxels voxels can be filtered in can be filtered in
parallel (using SSE)parallel (using SSE)

�� Omitting assembler details Omitting assembler details ☺☺ (see my (see my
previous presentation)previous presentation)

13

ResultsResults

�� Measured on Intel Pentium 4 1,6 GHz with Measured on Intel Pentium 4 1,6 GHz with
1 GB RAM1 GB RAM

31,1631,1627,6727,6736,6736,67speedupspeedup
3,20s3,20s0,30s0,30s0,03s0,03sSSESSE

99,70s99,70s8,30s8,30s1,10s1,10snonnon--optopt

1024x512x641024x512x64256x256x256256x256x256256x128x64256x128x64

14

Practical limitsPractical limits

�� Not general optimization of filtering Not general optimization of filtering ––
currently there are optimized only gauss3, currently there are optimized only gauss3,
gauss5, gauss7gauss5, gauss7

�� Only floatingOnly floating--point data (or convert it on point data (or convert it on
the fly the fly –– it is still faster and more precise!)it is still faster and more precise!)

�� Volume dimensions Volume dimensions –– multiple of 4multiple of 4

�� Additional memory is required Additional memory is required ––

3 lines/slice + 3 slices3 lines/slice + 3 slices

15

Changes in f3dChanges in f3d

�� not manynot many

�� new raster new raster -- f3dSIMDRasterf3dSIMDRaster

�� assembler implementation of gauss assembler implementation of gauss
filtering for gauss3, gauss5 and gauss7 filtering for gauss3, gauss5 and gauss7

�� changed f3dBand.changed f3dBand.cpp cpp (gauss filtering)(gauss filtering)

16

Usage in f3d (old way)Usage in f3d (old way)

f3dVolume* v;f3dVolume* v;

v=f3dLoadRawVolume(filename);v=f3dLoadRawVolume(filename);

vv-->>gaussFiltergaussFilter((sigmaxsigmax,, sigmaysigmay,, sigmazsigmaz););

vv-->save(filename); >save(filename);

17

Usage in f3d (new way)Usage in f3d (new way)

f3dVolume* v;f3dVolume* v;

v = f3dLoadSIMDVolume(filename);v = f3dLoadSIMDVolume(filename);

vv-->>gaussFiltergaussFilter((sigmaxsigmax,, sigmaysigmay,, sigmazsigmaz););

vv-->save(filename); >save(filename);

18

ConclusionConclusion

�� My intention (due to motivation article) My intention (due to motivation article) ––

SSE can speedup things (theoretically SSE can speedup things (theoretically
max 4 times) and assembler a little bitmax 4 times) and assembler a little bit

�� The praxis has shown that SSE speeds up The praxis has shown that SSE speeds up
things “only” 2things “only” 2--3 times3 times

�� The biggest impact (when processing The biggest impact (when processing
huge data) has the change of the huge data) has the change of the
algorithm with cache optimization in mindalgorithm with cache optimization in mind

19

Future workFuture work

�� optimization (for f3d) of:optimization (for f3d) of:

1.1. gaborgabor filteringfiltering

2.2. general filteringgeneral filtering

3.3. converting routinesconverting routines

4.4. any other calculation expensive thingsany other calculation expensive things

Thanks for your Thanks for your
attention !attention !

vaskovasko..antonanton@@gmailgmail.com.com

