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Why Deconvolution?

• Better looking image

• Improved identification
Reduces overlap of image structure to more easily identify 
features in the image

• PSF calibration
Removes artifacts in the image due to the point spread function 
(PSF) of the system,.

• Higher resolution
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Image Formation - Convolution

Image Domain -

Fourier Domain -
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Given the measurement g(r) and the PSF h(r) the object f(r) is 
computed.

e.g.   

and inverse Fourier transform to obtain f(r).

Problem:

The PSF and the measurement are both band-limited due to 
the finite size of the aperture.

The object/target is not.

Deconvolution

The convolution equation is inverted.
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Deconvolution via Linear Inversion



Marek Zimányi, DCGIP

Deconvolution via Linear Inversion
with a Wiener Filter - Example

measurement                         PSF                      reconstruction

Note the negativity in the reconstruction – not physical
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Bayes Theorem on Conditional 
Probability

P(A|B) P(B) = P(B|A) P(A)

P – Probabilities
A & B – Outcomes of random experiments
P(A|B) - Probability of A given that B has occurred

For Imaging:

P(B|A) - Probability of measuring image B given that the object is A

Fitting a probability model to a set of data and summarizing the
result by a probability distribution on the model parameters and
observed quantities.



Marek Zimányi, DCGIP

Bayes Theorem on Conditional 
Probability

• Setting up a full probability model – a joint probability 
distribution for all observable and unobservable quantities in a
problem,

• Conditioning on observed data: calculating and interpreting the 
appropriate posterior distribution – the conditional probability 
distribution of the unobserved quantities.

• Evaluating the fit of the model.  How good is the model? 
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Maximum a posteriori (MAP)

Regularized Maximum-likelihood

The posterior probability comes from Bayesian approaches, i.e. the probability 
of f being the object given the measurement g is:
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and P(f) is now the prior probability distribution (prior)
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Richardson-Lucy Algorithm

Discrete Convolution
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From Bayes theorem P(gi|fj) = hij and the object distribution can be expressed 
iteratively as
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so that the RL kernel approaches unity as the iterations progress

Richardson, W.H., “Bayesian-Based Iterative Method of Image Restoration”,   J. Opt. Soc. Am., 62, 55, (1972).
Lucy, L.B., “An iterative technique for the rectification of observed distributions”, Astron. J., 79, 745, (1974).
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Richardson-Lucy Application

Super-resolution means recovery of spatial frequency information beyond the 
cut-off frequency of the measurement system.

measurement                         PSF                      reconstruction
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Blind Deconvolution

Measurement
unknown 

object
unknown or poorly

known PSF

contamination

Need to solve for both object & PSF

“It’s not only impossible, it’s hopelessly impossible”
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•Poor or no PSF estimate – Blind Deconvolution
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PSF

n Exact PSF – known exactly
n In situ PSF – depends on properties of 

sample
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Multiple Frame Blind Deconvolution
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m independent observations of the same object.

The problem reduces from 

1 measurement & 2 unknowns

to

m measurements & m+1 unknowns
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Get PSF from directly from object



Marek Zimányi, DCGIP

Get PSF from directly from object
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Physically Constrained 
Iterative Deconvolution

n “Blind” deconvolution solves for both object f(r) and PSF h(r)
simultaneously.
n Ill-posed inverse problem.
n Under – determined: 1 measurement, 2 unknowns

n Uses Physical Constraints.
n f(r) & h(r) are positive, real & have finite support.

n Finite support reduces # of variables (symmetry breaking)
n h(r) is band-limited – symmetry breaking 

n a priori information - further symmetry breaking.
n Noise statistics
n PSF knowledge
n Object & PSF parameterization
n Multiple Frames:

n Same object, different PSFs.  
n N measurements, N+1 unknowns.
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Summary

• Deconvolution is necessary for many applications to remove the effects of PSF 
– PSF calibration

- identification of sources in a crowded field
- removal of asymmetric PSF artifacts etc.

• A choice of algorithms available
- Is any one algorithm the best?

- different algorithms for different applications
-

• What happens when the PSF is poorly determined?
- This is a problem for many AO cases.

What happens when the PSF is spatially variable?
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