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Intro

n Inverse problems and data reconstruction

n Using of parameters of confocal microscope  
in reconstruction process

n Application of this method in 
n Medical image reconstruction and enhancement 
n Confocal imaging
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Contents

n Intro
n Confocal microscopy
n Image Restoration
n Deconvolution in Confocal Microscopy
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Schematic 3-D Analysis
3D image acquisition

System Identification

Image Restoration

Segmentation and Measurements

Biologist -> Interpretation
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Stack of 2D images
∆X = ∆Y = 0.068µm
∆Z = 0.25µm

Immersion oil

Biological samplePBS

Piezo-electric translation device

Objective

Specific equipment - Optical
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Confocal Microscope

Emission 
Filter

Excitation 
Filter

Objective

Digital 
Detector

Dichroic
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Confocal microscope

n Confocal Imaging

From Bowe Ellis presentation “A Review of Confocal Microscopy”
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Confocal microscope

n Confocal Imaging
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Sources of microscopic image 
degradation

Microscopic images can be degraded by:
1. Instrumental imaging properties:

n Shading,
n Finite resolution (diffraction),
n Glare,
n Geometrical distortion,
n (Projection of 3D object to 2D image).
n (Which is the prime reason for using a confocal microscope)

2. Object induced:
n Object influences shape of the PSF
n Variable absorption or scattering

3. Noise:
n Additive (Gaussian noise),
n Multiplicative (Poisson noise)
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3D Image Formation

• Determines image quality

• Acquisition system dependent:
confocal
conventional

Point Spread Function (PSF)
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Reconstructions are based on the convolution 
scanned data with a filter.

Fact
n Disadvantage sampling of the object

(under Nyquist frequency)

Fact
n Thickness of the slices
n Overlapping of two slices

Traditional reconstructions 
and their artifacts

Thick of slice
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Traditional reconstructions and 
their artifacts 2
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Traditional reconstructions and 
their artifacts 3

Marschner and Lobb data set [4]
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Inverse problem

n Model space (reconstructed space … e.g. cube)

n Data space (defined by slices)
n Result of the forward modeling

n Forward problem
n Mapping of the model space to data space (generation 

of images)
d = F(m) + n

n Inverse problem
n Reconstruction of object from slices and scanner 

parameters
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Solutions of Inverse problem

Non iterative methods (inverse filtering):
n Tikhonov-Miller (TM) regularized inversion (Wiener filter)

Iterative forms of inverse filtering:
n van Cittert: iterative form of direct inversion, with or without

positivity constraint.
n Landweber method: steepest descent optimization form of TM

with(out) positivity
n Conjugate gradients form of TM, with(out) positivity (ICTM).
(MLE)
n Expectation-maximization algorithm (EM).
n Maximum Entropy.
n Blind deconvolution (…including PSF estimation)
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Restoration criteria
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Wiener filter
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The ‘van Cittert’ method I
n Optimize some quality measure of the estimate
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The ‘van Cittert’ method I

The iterations are started for instance by setting 
the first estimate to the measured image.

It can be shown that the iterations converge to 
direct inversion. Still, with this technique we 
can now:

n Force a positivity constraint by clipping each 
new estimate. Importantly, this allows 
recovery of lost spatial frequency
components.

n Stop if noise amplification becomes too severe
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Iterative Constrained Tikhonov-
Miller (ICTM) restoration

n The quality measure in the ‘van Cittert’ 
method is based on the difference
between the measured image and the 
imaged estimate:
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Quality measures for image 
restoration
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n Forward problem - Information about 
scanner.

Maximum likelihood estimation

• Inverse problem - Data object (1D function) 
modeling by MRF and  simulated annealing

l Simplification:
Transformation
to the 1D problem
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d - scanned data
f - data model

Interpolation and the probability

)(
)()/()/(

dp
fpfdpdfp ×

=

p( f / d ) … its maximization gives solution:
a posteriori information f*= arg max p(f / d)

p( d / f ) … obtained from simulation of CT.
by forward modeling

p( f ) ……. main information about the object.
prior probability

p( d ) …… constant (null information)

Solution of inverse problem: Bayesian relation 
form



25Marek Zimányi, DCGIP

n Estimation of the Point Spread Function 
of tomograph

∫
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data.
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• Expression of p(d/f) (it is Gaussian noise):
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Parameters of CT scanner
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Point spread function
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n Markov random field theory:

Reconstruction by MRF
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Energy function
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Smoothness constraint expressed by 
derivations.
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n Simulated annealing

n Genetic algorithm

n Memetic Algorithm

n Mean-Field Annealing

Minimization
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Simulated annealing

Minimization

SA algorithm:
 initialize T and f
 repeat
   Metropolis( f, T )
   decrease T
 until ( T > Tmin )
 return f

Metropolis sampler:
 insert T, f
 repeat
     f∈rand(vinicity f)
    ∆E ← E( f´ ) - E( f )
    x ∈ random (0,1)

    if ( x < p) then f´ → f
 until (equilibrium is reached)

TEep /∆−=

TEeE /)(Prob −=
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A comparison of ICTM and MLE 
restored images I
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Results
Cubic interpolation Statistic interpolation
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Overview
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Original object

Results

Cubic interpolation Statistic interpolation
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Original data:

1.

4.

2.

3.

Results
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Original

Vzorkovanie = 3 Vzorkovanie = 4

Sampling = 1

Results

Cubic interpolation

Statistic interpolation


