3D deconvolution

Marek Zimányi

Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava

Intro

n Inverse problems and data reconstruction

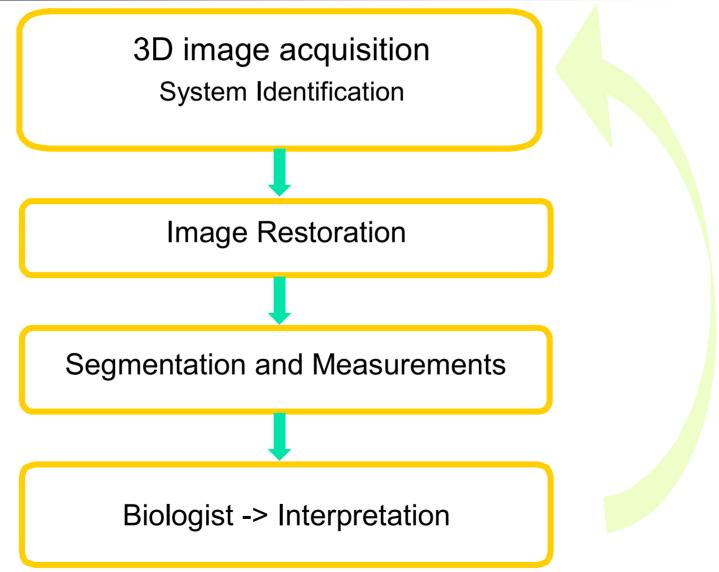
In Using of parameters of confocal microscope in reconstruction process

Application of this method in
 Medical image reconstruction and enhancement
 Confocal imaging

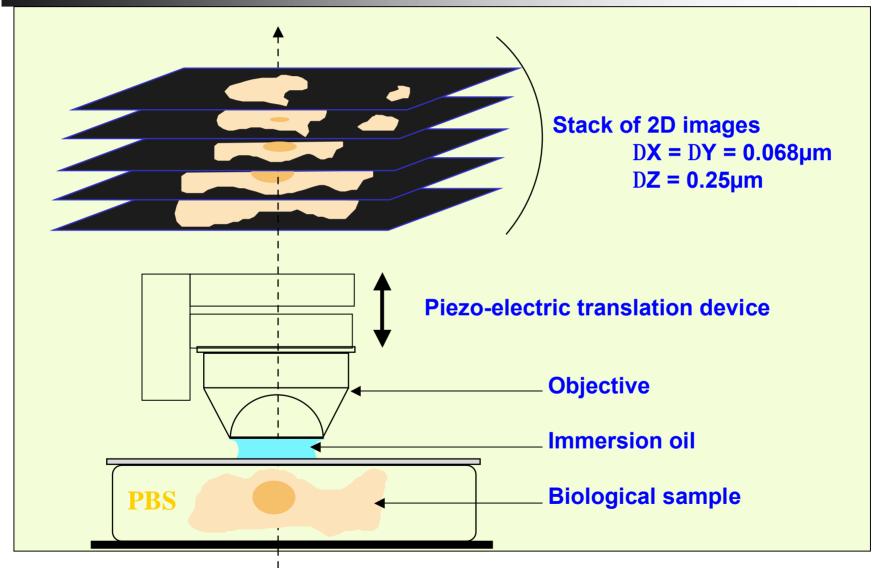
Contents

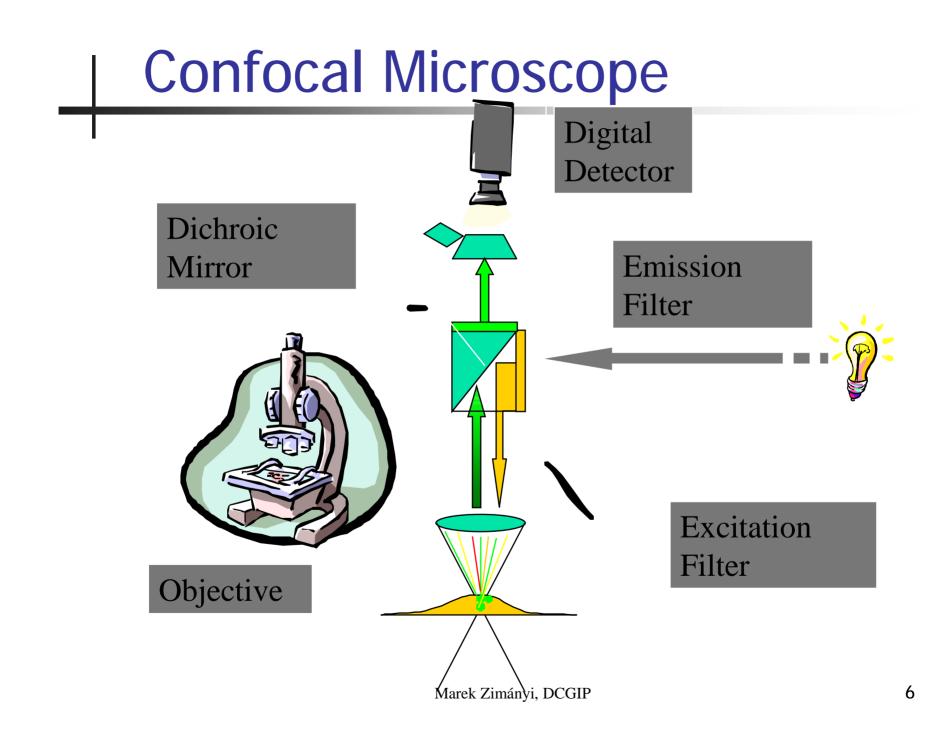
- n Intro
- Confocal microscopy
- n Image Restoration
- Deconvolution in Confocal Microscopy

Schematic 3-D Analysis



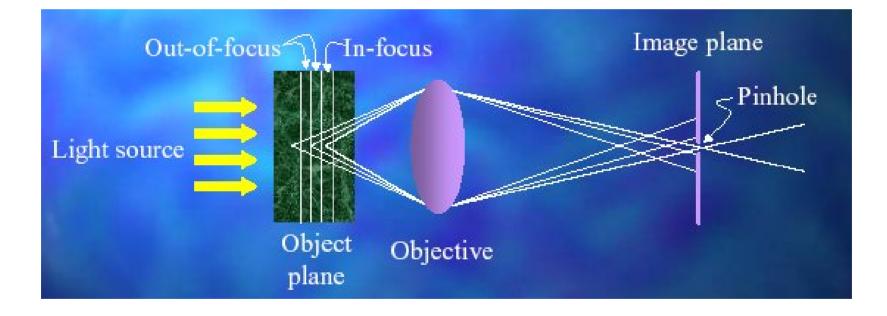
Specific equipment - Optical





Confocal microscope

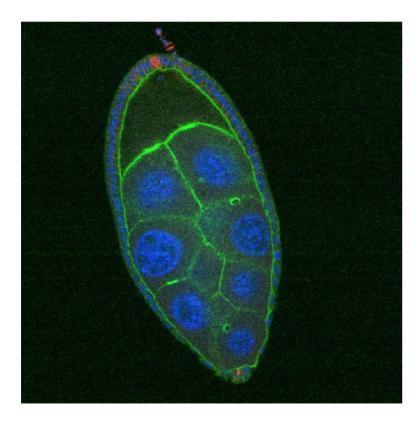
n Confocal Imaging

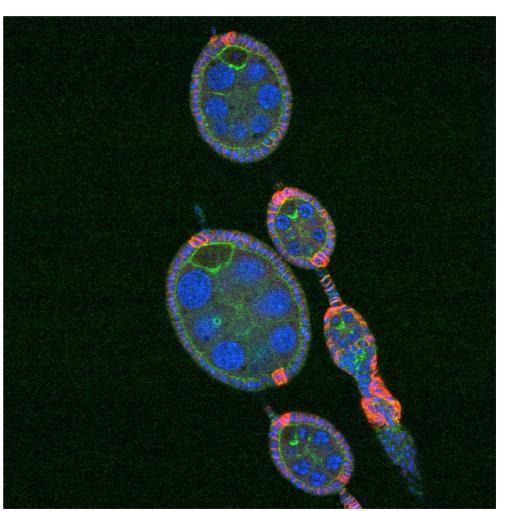


From Bowe Ellis presentation "A Review of Confocal Microscopy"

Confocal microscope

n Confocal Imaging





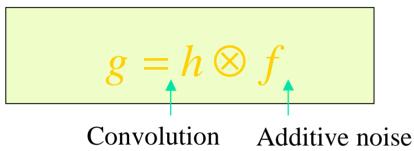
Sources of microscopic image degradation

Microscopic images can be degraded by:

- 1. Instrumental imaging properties:
 - n Shading,
 - **n** Finite resolution (diffraction),
 - n Glare,
 - n Geometrical distortion,
 - n (Projection of 3D object to 2D image).
 - **n** (Which is the prime reason for using a confocal microscope)
- 2. Object induced:
 - n Object influences shape of the PSF
 - **n** Variable absorption or scattering
- 3. Noise:
 - n Additive (Gaussian noise),
 - Multiplicative (Poisson noise)

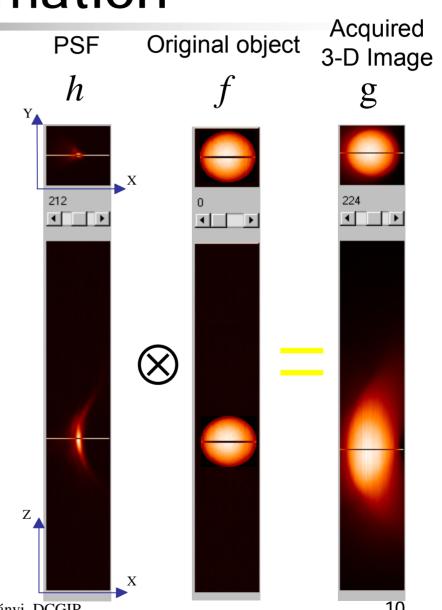
3D Image Formation

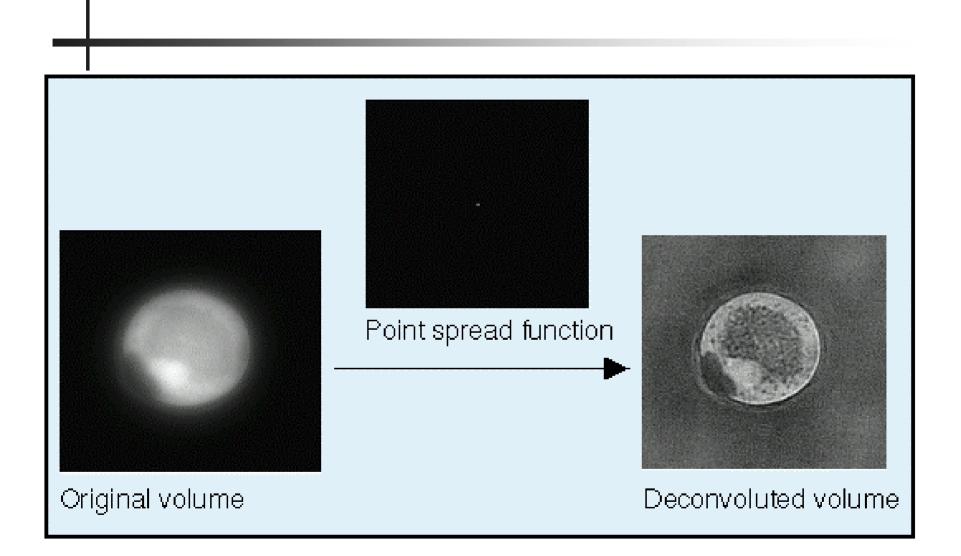
Modelization



Point Spread Function (PSF)

- Determines image quality
- Acquisition system dependent: confocal conventional





Traditional reconstructions and their artifacts

Reconstructions are based on the convolution scanned data with a filter.

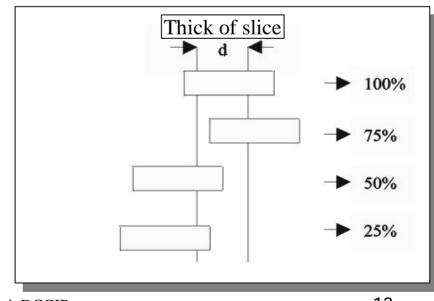
Fact

n Disadvantage sampling of the object

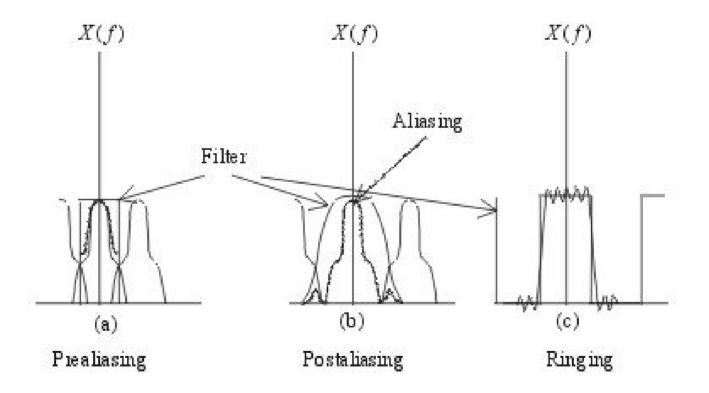
(under Nyquist frequency)

Fact

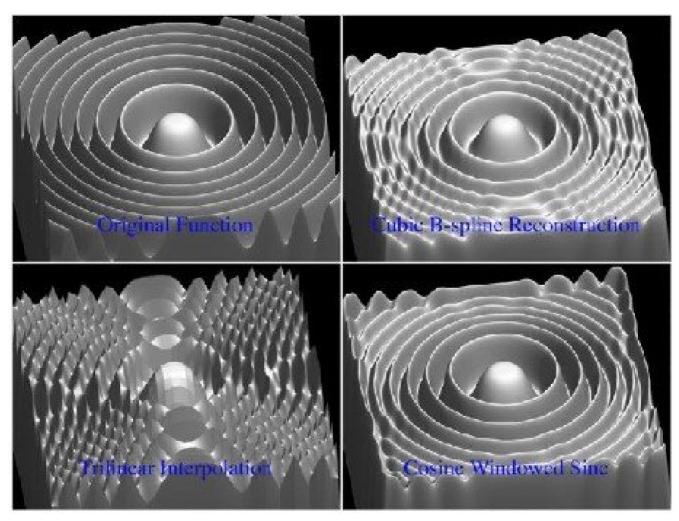
- n Thickness of the slices
- overlapping of two slices



Traditional reconstructions and their artifacts 2



Traditional reconstructions and their artifacts 3



Marschner and Lobb data set [4]

Inverse problem

n Model space (reconstructed space ... e.g. cube)

- n Data space (defined by slices)
 - Result of the forward modeling
- n Forward problem
 - Mapping of the model space to data space (generation of images)

d = F(m) + n

- n Inverse problem
 - Reconstruction of object from slices and scanner parameters

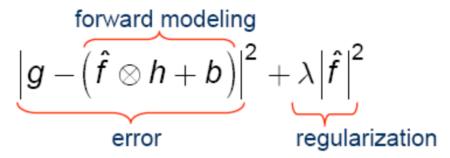
Solutions of Inverse problem

Non iterative methods (inverse filtering):

- **n** Tikhonov-Miller (TM) regularized inversion (Wiener filter)
- Iterative forms of inverse filtering:
 - van Cittert: iterative form of direct inversion, with or without positivity constraint.
 - Landweber method: steepest descent optimization form of TM with(out) positivity
 - Conjugate gradients form of TM, with(out) positivity (ICTM).
 (MLE)
 - Expectation-maximization algorithm (EM).
 - n Maximum Entropy.
 - Blind deconvolution (...including PSF estimation)

Restoration criteria

Minimize a functional (such as the Tikhonov functional)



The functional consists of two conflicting terms balanced by the regularization parameter λ .

Error criterion between result and image

Gaussian noise: mean-square-error Poisson noise: I-divergence

Regularization term

models a priori knowledge penalizes undesired (noise dominated) results

These two terms are balanced by the regularization parameter λ

Wiener filter

 The Wiener restoration filter W minimizes the MSE between the restoration result and the ground truth.

$$\min_{W}\left\{\left|\hat{F}-F\right|^{2}\right\}$$

- Wiener requires an estimate of:
 - Transfer function H
 - Spectral density function of noise:
 - Spectral density function of the image: S_f
- If the spectral density functions are unknown, then

Pseudo inverse

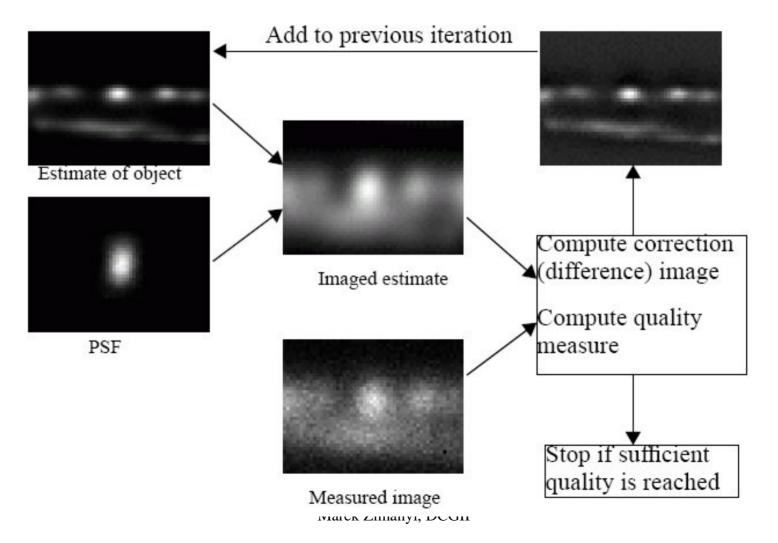
Question: How to choose K?

$$P(u,v) = \frac{H^{*}(u,v)}{\left|H(u,v)\right|^{2} + K}$$

 $W(u,v) = \frac{H^*(u,v)}{\left|H(u,v)\right|^2 + \frac{\sigma_n^2}{S_c(u,v)}}$

The 'van Cittert' method I

n Optimize some quality measure of the estimate



The 'van Cittert' method I

- The iterations are started for instance by setting the first estimate to the measured image.
- It can be shown that the iterations converge to direct inversion. Still, with this technique we can now:
- Force a positivity constraint by clipping each new estimate. Importantly, this allows
 recovery of lost spatial frequency
 components.
- **n** Stop if noise amplification becomes too severe

Iterative Constrained Tikhonov-Miller (ICTM) restoration

n The quality measure in the 'van Cittert' method is based on the difference between the measured image and the imaged estimate:

$$D_k = g - (h \otimes \hat{e}_k)$$

Quality measures for image restoration

The direct T-M and the ICTM method both optimize a (weighted) *Mean* Square Error criterion:

MSE
$$(g, e) = ||e - g||^2$$

However, for solutions which are required to be non-negative (fluorescent objects!), Csiszár showed the *I-Divergence* distance measure (also known as cross-entropy) to be an optimal criterion:

$$I(e,g) = \sum e_i \ln(e_i/g_i) - \sum (e_i - g_i)$$

with the sum over all measured voxels.

Maximum likelihood estimation

- n Forward problem Information about scanner.
 - Simplification: Transformation to the 1D problem



• Inverse problem - Data object (1D function) modeling by MRF and simulated annealing

Interpolation and the probability

Solution of inverse problem: Bayesian relation form

- *d* scanned data *f* - data model $p(f/d) = \frac{p(d/f) \times p(f)}{p(d)}$

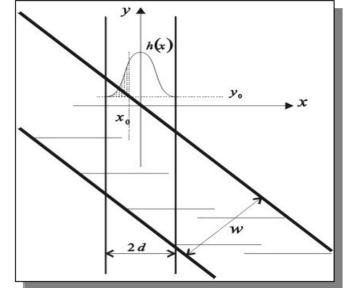
 - p(d) constant (null information)

Parameters of CT scanner

n Estimation of the Point Spread Function h(x)of tomograph

$$f(y_0) = \int_{-\infty}^{x_0} h(x) dx$$

• We replace function h(x) by gaussian function or set of scanned data.



Expression of p(d/f) (it is Gaussian noise):

$$p(d/f) = \frac{e^{(-U(d/f)/T)}}{s\sqrt{2p}}$$
 where $U(d/f) = \sum \frac{(fct_i - d_i)}{2s^2}$

Point spread function

Restoration algorithms require the PSF as input.
 The PSF can be obtained in the following ways:

Theoretical PSF

PSF calculated using diffraction theory PSF is noise-free, but does not account for optical aberrations

Measured PSF

PSF obtained from restoring images of beads of known size Measured PSF is not noise-free and may include restoration artifacts

 Blind Image Restoration does not require a PSF since it is estimated by the algorithm

Reconstruction by MRF

n Markov random field theory: $p(f) = \frac{e^{(-U(f)/T)}}{Z} \quad \text{where} \quad \begin{array}{l} U(f) = \sum V_c(f);\\ V_c(f) \text{ is a potencial} \end{array}$

We assume Gaussian noise:

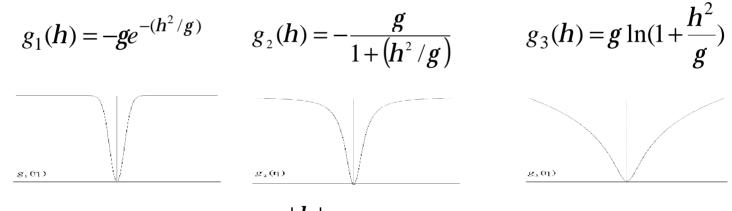
$$p(d/f) = \frac{e^{(-U(d/f)/T)}}{s\sqrt{2p}}$$
 where $U(d/f) = \sum \frac{(fct_i - d_i)}{2s^2}$

$$\max[p(f/d)] \Leftrightarrow \max[p(f).p(d/f)]$$
$$\bigcup$$
$$\min[U(f) + U(d/f)]$$

Energy function

Smoothness constraint expressed by derivations. $V_c(f) = g(f')$

$$\min[\sum g(f') + \sum (fct - d)/2s^2]$$

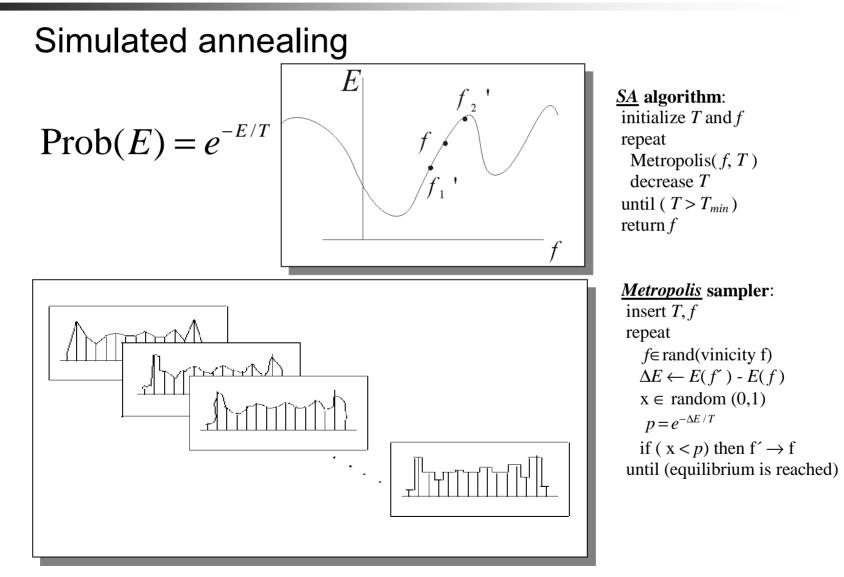


$$g_4(h) = g |h| - g^2 \ln(1 + \frac{|h|}{g})$$
 $g_5(h) = |h|$

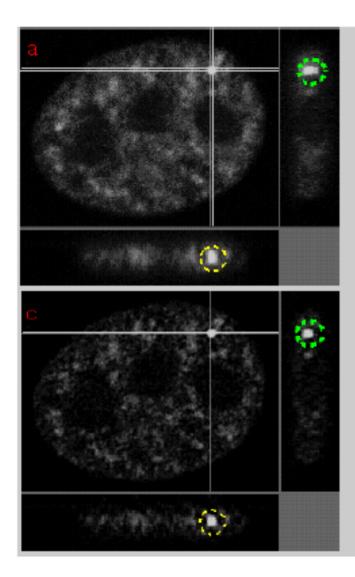
Minimization

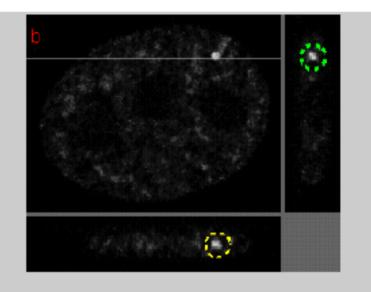
- **n** Simulated annealing
- **n** Genetic algorithm
- **n** Memetic Algorithm
- n Mean-Field Annealing

Minimization



A comparison of ICTM and MLE restored images I

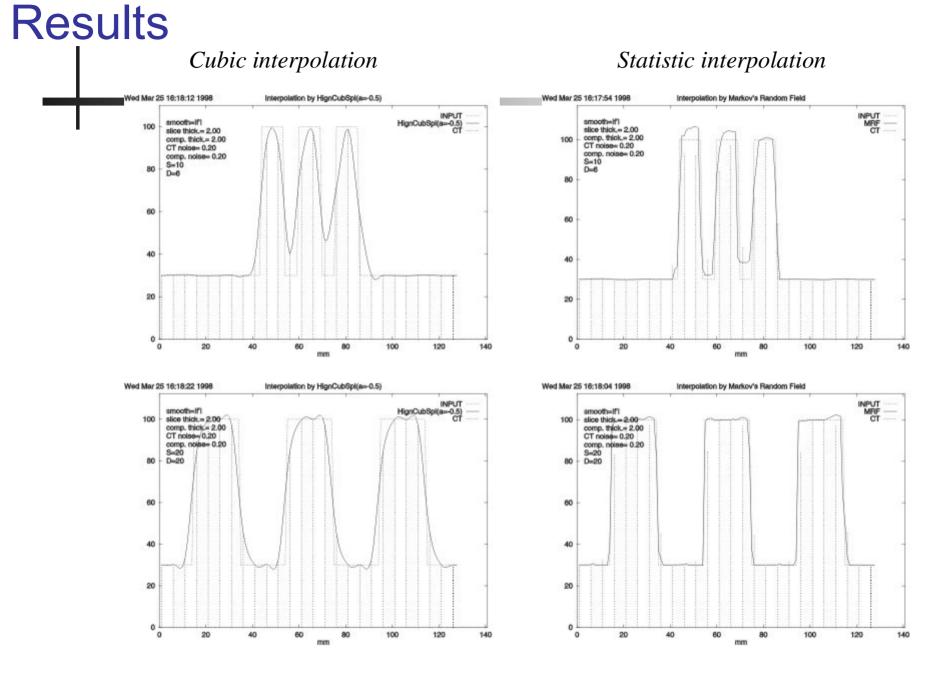




Immunofluorescent labelled cell nucleus. All restorations were performed with a <u>measured</u> PSF

a) x-y, x-z, y-z sections through original image
b) MLE restoration, 20 iterations

c) ICTM result, 10 iterations, no regularization

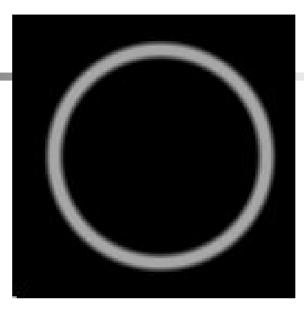


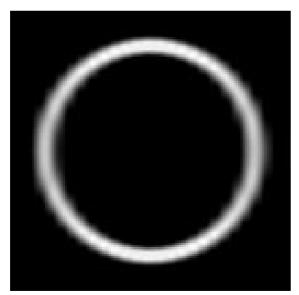
Overview

	Richardson-Lucy (+ many others)	ITCM, Carrington (+ many others)
Noise	Poisson	Additive Gaussian
Error criterion	I-divergence	mean-square-error
Functional	log-likelihood	Tikhonov
Regularization		Tikhonov (+ others)
Constraints	non-negativity	non-negativity
Algorithm	EM	Conjugate gradients

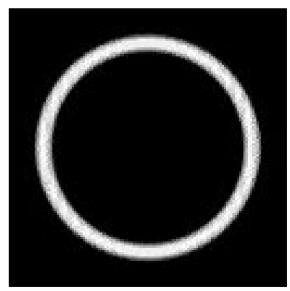
Results

Original object





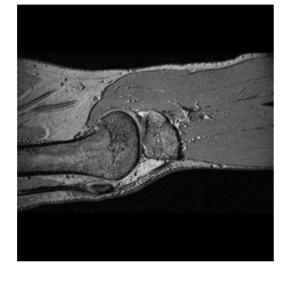
Cubic interpolation



Statistic interpolation

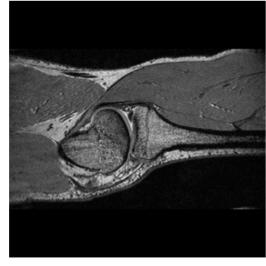
Results

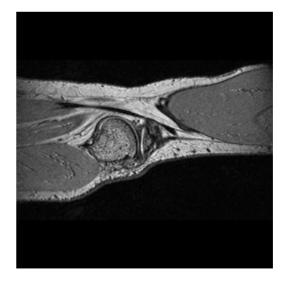
Original data:



3.

1.





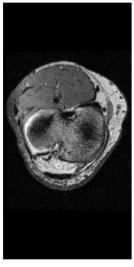
2.

4.

Results

Original

Statistic interpolation



Sampling = 1

Cubic interpolation

Vzorkovanie = 4

36