
Efficient implementation of 
entropy estimation for 

registration

Mobility project report
5.12.2005 - 26.3.2006



Project information
● Creative vision in practice
● Partners: 

● Neovision
● Center for Machine Perception, 
  Czech Technical University

● part of the Miracle Center of Excellence

Leonardo Da Vinci mobility, 5.12.2005–26.3.2006
13 weeks



Registration using MI
● Spatial alignment of images
● For transformation evaluation 
   => similarity measure

● Geometrical features
● Corresponding voxel values

● SSD, correlation
● Dispersion of joint histogram 
   => joint entropy, MI



Problem introduction
● Mutual information criterion for image registration => 

estimation from finite sample
● 105 - 107 data points => fast, if we want to use the whole

sample => not Parzen windows
● High dimensional features 
   (color, spatial neighborhood) 
   to use more information => 
   reliable for high dimensional 
   distributions => 
   no histogram based estimation

● Used as an optimization criterion => statistically stable



Estimating entropy

● Plug-in estimates
● estimate of the distribution, which is pluged into the 

definition of entropy
● histogram estimate, mixture of Gaussians, Parzen 

windows
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Estimating entropy

● Order statistics and nearest neighbor estimates
● estimates from the distances between neighbor values in 

the sample
● for 1D order statistics
● for arbitrary D nearest neighbor

● In 1D case
● Expectation of probability mass between two 

successive points in order statistics is constant

log  pX i≈−log i−log N 
X

i
X

i+1
X

i-1
X

i

pX i i≈
1
N

⇒



Estimating entropy

● Compression estimates
● entropy is the lower bound on the size of lossless 

compressed data
● Lempel-Ziv
● Burrows-Wheeler

● compressing the data => size after is the upper bound on 
entropy

● the better compression the better estimate



Implemented approach

● modified Kozachenko – Leonenko nearest 
neighbor estimate

● Based on an unpublished work of Jan Kybic
● kD tree used as underlying data structure for all-

NN search
● for the use in optimisation procedures an update 

operation designed
● for the search a Best Bin First approach used



Properties of KL Estimator
● Kozachenko – Leonenko nearest neighbor estimator [KoLe]

● Modified for      norm and dimensionality d

● Based directly on sample values
● Asymptotically unbiased
● Binless => no „curse of dimensionality“
● Mean square consistent => lim

n∞
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Efficient implementation issues
● All nearest neighbor search

● O(dN2) for brute force approach
● More efficient 

● Space partioning trees – kD trees, box-
decomposition trees

● Voronoi diagrams
● Approximate nearest neighbor

● Quantization
● Multiple points
● KL estimator is based on continuous distribution 

assumption



kD tree
● Binary space decomposition tree
● Root node represents the whole space
● Children => cutting the parent hyperrectangle by a plane 

=> loose bounding box 
   for each node
● Tight bounding boxes 
   maintained
● Axis aligned 
   hyperrectangles 

=>       norm used
● Optional parameter - 
   number of points
   in leaf

L∞



Quantization problem

● KL Estimator derived with continuous impulse-free 
distribution assumption

● Quantization => equal values in sample => 

● Used solution
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Implementation details
● In ANSI C++
● Inspired by previous Ocaml implementation, but 

written from scratch
● Platform independent
● Succesfully compiled on Win32 platform with 

GCC compiler in MinGW enviroment and MS 
Visual C++ compiler

● Working enviroment: msys, mingw, Code::Blocks



Experiments – artifical data

Dimensionality True entropy Building time Iterating time Entropy error
1 1.41894 5,437 1,563 -0.000538472
3 4.25682 8,937 16,641 -0.00378593
5 7.09469 10,609 119.547 -0.0115131
10 14.1894 13.578 654.015 1.20752

● Run on Celeron 2 Ghz, 248 MB RAM
● Entropy estimation for 1 000 000 normally distributed 

points, for leaf size 40, max visit 1000, for d=1 100



Experiments – artifical data

Step Building time Iterating time Entropy error
0 0,5500 1,3203 -0,001134730

0,00001 0,5576 1,3206 -0,000190042
0,0001 0,5612 1,3188 -0,004629920
0,001 0,5532 1,3158 -0,005963390
0,01 0,5500 1,1516 -0,036931000
0,1 0,5188 0,3140 -8,399770000
1 0,2564 0,0108 -19,362000000

● Run on Celeron 2 Ghz, 248 MB RAM
● Entropy estimation for 100 000 3D normally distributed 

points, with quantization



Experiments – artifical data

● Run on Pentium IV 2 GHz and Celeron 2GHz
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Open problems and future 
work

● Quantization
● Low amplitude noise
● Smoothing
● Derivation of estimator with the quantization noise 

assumption
● Derivation estimation
● Mutual information estimation

●

● Direct nearest neighbor MI estimator [Kraskov] 
implementation in this framework

● Normalized MI experiments
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