Efficient implementation of entropy estimation for registration

Mobility project report 5.12.2005 - 26.3.2006

Project information

- Creative vision in practice
- Partners:

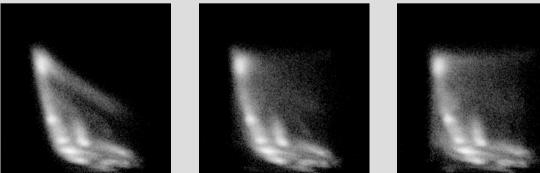
• Center for Machine Perception, Czech Technical University

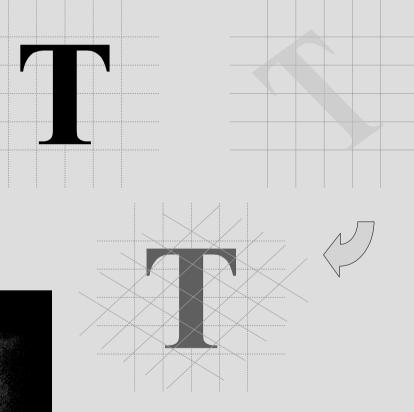
• part of the Miracle Center of Excellence

Leonardo Da Vinci mobility, 5.12.2005–26.3.2006 13 weeks

Registration using MI

- Spatial alignment of images
- For transformation evaluation => similarity measure
 - Geometrical features
 - Corresponding voxel values
 - SSD, correlation
 - Dispersion of joint histogram => joint entropy, MI

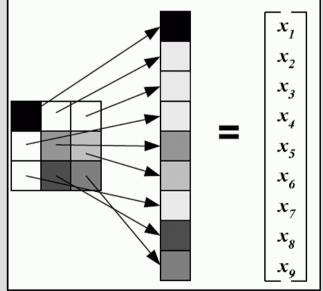




Problem introduction

- Mutual information criterion for image registration => estimation from finite sample
 - $10^5 10^7$ data points => fast, if we want to use the whole sample => not Parzen windows
 - High dimensional features

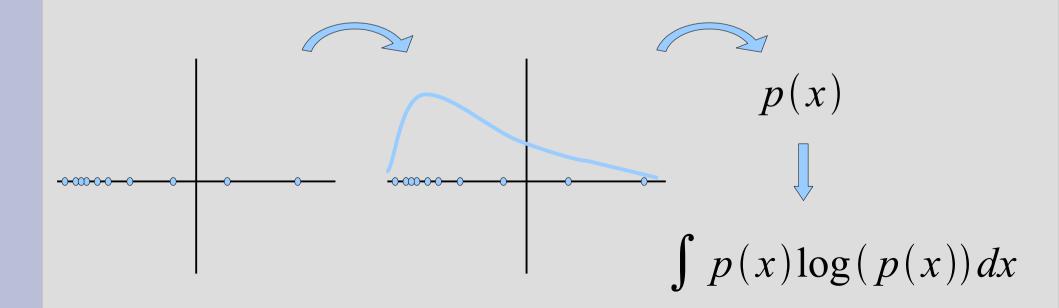
 (color, spatial neighborhood)
 to use more information =>
 reliable for high dimensional
 distributions =>
 no histogram based estimation



• Used as an optimization criterion => statistically stable

Estimating entropy

- Plug-in estimates
 - estimate of the distribution, which is pluged into the definition of entropy
 - histogram estimate, mixture of Gaussians, Parzen windows



Estimating entropy

- Order statistics and nearest neighbor estimates
 - estimates from the distances between neighbor values in the sample
 - for 1D order statistics
 - for arbitrary D nearest neighbor
 - In 1D case
 - Expectation of probability mass between two successive points in order statistics is constant

$$\underbrace{p(X_i)\lambda_i \approx \frac{1}{N} \Rightarrow}_{X_{i-1} \quad X_i \quad X_{i+1}} \log(p(X_i)) \approx -\log(\lambda_i) - \log(N)$$

Estimating entropy

- Compression estimates
 - entropy is the lower bound on the size of lossless compressed data
 - Lempel-Ziv
 - Burrows-Wheeler
 - compressing the data => size after is the upper bound on entropy
 - the better compression the better estimate

Implemented approach

- modified Kozachenko Leonenko nearest neighbor estimate
- Based on an unpublished work of Jan Kybic
- kD tree used as underlying data structure for all-NN search
- for the use in optimisation procedures an update operation designed
- for the search a Best Bin First approach used

Properties of KL Estimator

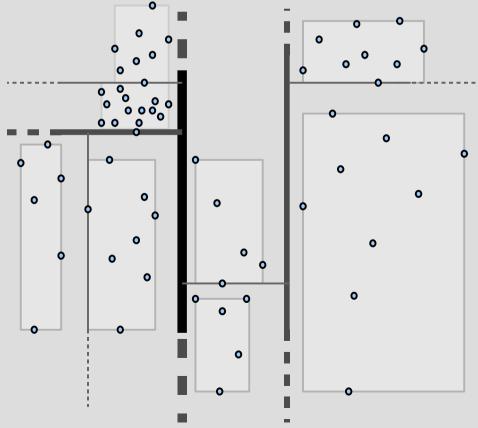
- Kozachenko Leonenko nearest neighbor estimator [KoLe] $KL(\{X_1, ..., X_N\}) = -\frac{1}{N} \sum_{j=1}^{N} [\log(\lambda_j) + \log[2(N-1)] + \frac{\gamma}{\ln(2)}]$
- Modified for L_{∞} norm and dimensionality d $KL(\{X_1, ..., X_N\}) = -\frac{1}{N} \sum_{j=1}^{N} d\log(\lambda_j) + \log[2^d(N-1)] + \gamma$
- Based directly on sample values
- Asymptotically unbiased
- Binless => no ,,curse of dimensionality"
- Mean square consistent => $\lim E[(\dot{H}_n H(X))^2] = 0$

Efficient implementation issues

- All nearest neighbor search
 - $O(dN^2)$ for brute force approach
 - More efficient
 - Space partioning trees kD trees, boxdecomposition trees
 - Voronoi diagrams
 - Approximate nearest neighbor
- Quantization
 - Multiple points
 - KL estimator is based on continuous distribution assumption

kD tree

- Binary space decomposition tree
- Root node represents the whole space
- Children => cutting the parent hyperrectangle by a plane
 => loose bounding box
 for each node
- Tight bounding boxes maintained
- Axis aligned hyperrectangles => Lnorm used
- Optional parameter number of points in leaf



Quantization problem

- KL Estimator derived with continuous impulse-free distribution assumption
- Quantization => equal values in sample =>

$$\log(\lambda_i) = \log(0) = -\infty$$

• Used solution

$$\log(\lambda_i) \Rightarrow \log(\frac{\epsilon^d}{k_i}) \quad for \lambda_i < \epsilon$$

Implementation details

- In ANSI C++
- Inspired by previous Ocaml implementation, but written from scratch
- Platform independent
- Succesfully compiled on Win32 platform with GCC compiler in MinGW environment and MS Visual C++ compiler
- Working environment: msys, mingw, Code::Blocks

Experiments – artifical data

- Run on Celeron 2 Ghz, 248 MB RAM
- Entropy estimation for 1 000 000 normally distributed points, for leaf size 40, max visit 1000, for d=1 100

Dimensionality	True entropy	Building time	Iterating time	Entropy error
1	1.41894	5,437	1,563	-0.000538472
3	4.25682	8,937	16,641	-0.00378593
5	7.09469	10,609	119.547	-0.0115131
10	14.1894	13.578	654.015	1.20752

Experiments – artifical data

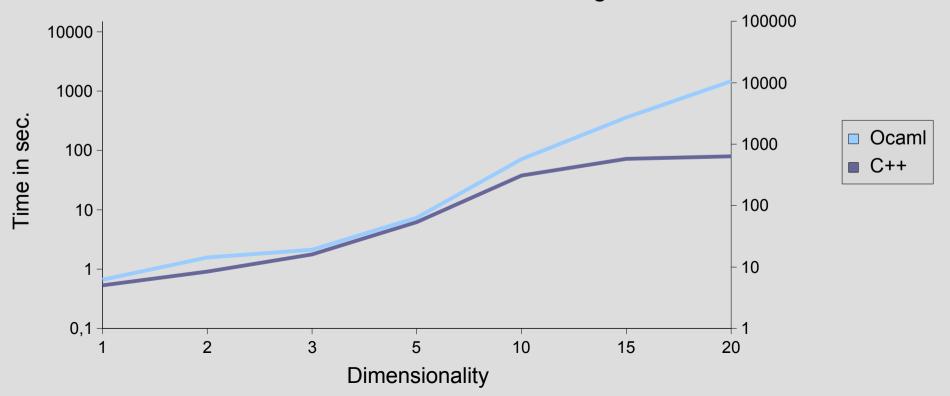
- Run on Celeron 2 Ghz, 248 MB RAM
- Entropy estimation for 100 000 3D normally distributed points, with quantization

Step	Building time	Iterating time	Entropy error
0	0,5500	1,3203	-0,001134730
0,00001	0,5576	1,3206	-0,000190042
0,0001	0,5612	1,3188	-0,004629920
0,001	0,5532	1,3158	-0,005963390
0,01	0,5500	1,1516	-0,036931000
0,1	0,5188	0,3140	-8,399770000
1	0,2564	0,0108	-19,362000000

Experiments – artifical data

• Run on Pentium IV 2 GHz and Celeron 2GHz

Comparison of all - NN iteration for Ocaml and C++ implementations 100 000 uniformly distributed points, leaf size 40 C++ times in scale 1/10, Both in logarithm scale



Open problems and future work

- Quantization
 - Low amplitude noise
 - Smoothing
 - Derivation of estimator with the quantization noise assumption
- Derivation estimation
- Mutual information estimation
 - H(X) + H(Y) H(X, Y)
 - Direct nearest neighbor MI estimator [Kraskov] implementation in this framework
- Normalized MI experiments

$$\frac{H(X) + H(Y)}{H(X,Y)}$$

References

[KoLe]

Kozachenko L., Leonenko N., "On statistical estimation of entropy of random vector", Problems Infor. Transmiss., 23(2):95–101, 1987

[NumRec] Numerical recepies in C, http://www.library.cornell.edu/nr/bookcpdf.html

[Kraskov] Kraskov A., Stogbauer H., Grassberger P., "Estimating Mutual Information", ArXiv cond-mat/0305641, 2003