
Efficient implementation of
entropy estimation for

registration

Mobility project report
5.12.2005 - 26.3.2006

Project information
● Creative vision in practice
● Partners:

● Neovision
● Center for Machine Perception,
 Czech Technical University

● part of the Miracle Center of Excellence

Leonardo Da Vinci mobility, 5.12.2005–26.3.2006
13 weeks

Registration using MI
● Spatial alignment of images
● For transformation evaluation
 => similarity measure

● Geometrical features
● Corresponding voxel values

● SSD, correlation
● Dispersion of joint histogram
 => joint entropy, MI

Problem introduction
● Mutual information criterion for image registration =>

estimation from finite sample
● 105 - 107 data points => fast, if we want to use the whole

sample => not Parzen windows
● High dimensional features
 (color, spatial neighborhood)
 to use more information =>
 reliable for high dimensional
 distributions =>
 no histogram based estimation

● Used as an optimization criterion => statistically stable

Estimating entropy

● Plug-in estimates
● estimate of the distribution, which is pluged into the

definition of entropy
● histogram estimate, mixture of Gaussians, Parzen

windows

p x

∫ p x log p x dx

Estimating entropy

● Order statistics and nearest neighbor estimates
● estimates from the distances between neighbor values in

the sample
● for 1D order statistics
● for arbitrary D nearest neighbor

● In 1D case
● Expectation of probability mass between two

successive points in order statistics is constant

log pX i≈−log i−log N
X

i
X

i+1
X

i-1
X

i

pX i i≈
1
N

⇒

Estimating entropy

● Compression estimates
● entropy is the lower bound on the size of lossless

compressed data
● Lempel-Ziv
● Burrows-Wheeler

● compressing the data => size after is the upper bound on
entropy

● the better compression the better estimate

Implemented approach

● modified Kozachenko – Leonenko nearest
neighbor estimate

● Based on an unpublished work of Jan Kybic
● kD tree used as underlying data structure for all-

NN search
● for the use in optimisation procedures an update

operation designed
● for the search a Best Bin First approach used

Properties of KL Estimator
● Kozachenko – Leonenko nearest neighbor estimator [KoLe]

● Modified for norm and dimensionality d

● Based directly on sample values
● Asymptotically unbiased
● Binless => no „curse of dimensionality“
● Mean square consistent => lim

n∞
E [H n−H X 2]=0

KL{ X 1 , ... , X N }=− 1
N∑j=1

N

[log jlog [2N−1]

ln 2
]

L∞

KL{ X 1 , ... , X N }=− 1
N∑j=1

N

d log jlog [2d N−1]

Efficient implementation issues
● All nearest neighbor search

● O(dN2) for brute force approach
● More efficient

● Space partioning trees – kD trees, box-
decomposition trees

● Voronoi diagrams
● Approximate nearest neighbor

● Quantization
● Multiple points
● KL estimator is based on continuous distribution

assumption

kD tree
● Binary space decomposition tree
● Root node represents the whole space
● Children => cutting the parent hyperrectangle by a plane

=> loose bounding box
 for each node
● Tight bounding boxes
 maintained
● Axis aligned
 hyperrectangles

=> norm used
● Optional parameter -
 number of points
 in leaf

L∞

Quantization problem

● KL Estimator derived with continuous impulse-free
distribution assumption

● Quantization => equal values in sample =>

● Used solution

log i=log 0=−∞

log i ⇒ log
d

k i
 for i

Implementation details
● In ANSI C++
● Inspired by previous Ocaml implementation, but

written from scratch
● Platform independent
● Succesfully compiled on Win32 platform with

GCC compiler in MinGW enviroment and MS
Visual C++ compiler

● Working enviroment: msys, mingw, Code::Blocks

Experiments – artifical data

Dimensionality True entropy Building time Iterating time Entropy error
1 1.41894 5,437 1,563 -0.000538472
3 4.25682 8,937 16,641 -0.00378593
5 7.09469 10,609 119.547 -0.0115131
10 14.1894 13.578 654.015 1.20752

● Run on Celeron 2 Ghz, 248 MB RAM
● Entropy estimation for 1 000 000 normally distributed

points, for leaf size 40, max visit 1000, for d=1 100

Experiments – artifical data

Step Building time Iterating time Entropy error
0 0,5500 1,3203 -0,001134730

0,00001 0,5576 1,3206 -0,000190042
0,0001 0,5612 1,3188 -0,004629920
0,001 0,5532 1,3158 -0,005963390
0,01 0,5500 1,1516 -0,036931000
0,1 0,5188 0,3140 -8,399770000
1 0,2564 0,0108 -19,362000000

● Run on Celeron 2 Ghz, 248 MB RAM
● Entropy estimation for 100 000 3D normally distributed

points, with quantization

Experiments – artifical data

● Run on Pentium IV 2 GHz and Celeron 2GHz

1 2 3 5 10 15 20
0,1

1

10

100

1000

10000

1

10

100

1000

10000

100000

Comparison of all - NN iteration for Ocaml and C++ implementations
100 000 uniformly distributed points, leaf size 40
C++ times in scale 1/10, Both in logarithm scale

Ocaml
C++

Dimensionality

Ti
m

e
in

 s
ec

.

Open problems and future
work

● Quantization
● Low amplitude noise
● Smoothing
● Derivation of estimator with the quantization noise

assumption
● Derivation estimation
● Mutual information estimation

●

● Direct nearest neighbor MI estimator [Kraskov]
implementation in this framework

● Normalized MI experiments

H X H Y −H X ,Y

H X H Y
H X ,Y

References

[KoLe] Kozachenko L., Leonenko N., „On
statistical estimation of entropy of
random vector“, Problems Infor.
Transmiss., 23(2):95–101, 1987

[NumRec] Numerical recepies in C,
http://www.library.cornell.edu/nr/bookcpdf.html

[Kraskov] Kraskov A., Stogbauer H., Grassberger
P., "Estimating Mutual Information",
ArXiv cond-mat/0305641, 2003

http://www.library.cornell.edu/nr/bookcpdf.html

