
Volume Data Representation
and Processing Algorithms

A collection of ideas

Miloš Šrámek

Overview

● F3d format and tools for volume data
storage and processing

● The problem
● Algorithms for processing of volume data
● Different memory representations
● In-memory and stream processing
● A paper proposal

The f3d Format

● Support for different kinds of voxels
– Single- and multiband volumes
– 8, 16, 32 bit integers, signed and unsigned,

floats
● Different kinds of grids

Cartesian regular rectilinear

The f3d Format

● Self descriptive
– Stores all necessary data attributes

● Data compression
● Cross platform compatibility
– Little/Big endian
– Size of voxel representation

● Availability
– Covered by a non-restrictive license

● Ease of usage

Basic C Library

● Reading:
– f3dReadHeader
– f3dReadSlice
– f3dReadGrid, f3dReadCubGrid

● Writing: analogous
● Other:
– f3dSetHdrComment, f3dDelHdrComment
– f3dHostType
– f3dVoxelSize

Extended C++ Class Library

● Basic access to data voxels
● File storage and retrieval
● 3D data processing
– filters, segmentation, rendering, interpolation,

transformations, gradient, ...
● Typeless data processing

Class Hierarchy

f3dVolume

f3dGrid<T> f3dGrid<T, Raster>f3dGrid<T, Raster>f3dBand<T>

Memory Independence

f3dBand<T>

f3dRawRaster<T>

f3d...Raster<T>

f3d...Raster<T>

● Separation of algorithms
and memory
representation

f3d Tools

● f3dclass functionality implemented in the
form of UNIX filters:
– f3dprog [sw] [input.f3d] > output.f3d

– Filter concatenation is possible:
– tool1 [sw] in.f3d |...| toolN [sw] > out.f3d

● f3dview – simple slice viewer
● f3dvr – simple hardware-based renderer

f3d Tools: Point Operators

● f3d2f3d (voxel type conversion), f3dinvert,
f3dthresh, f3dbit , f3darith, f3dmask

● Example: Delete bone from CT data:
f3dthresh -lo 90 in.f3d | f3dmask -i in.f3d > out.f3d

f3d Tools: Local Operators
(Filters)

● Data processing in a local voxel
neighborhood

● Order filters: f3dmax, f3dmin, f3dmedian
● Example: Noise removal by the median filter
 f3dmedian -k 3 in.f3d > out.f3d

f3d Tools: Local Operators
(Filters)

● Data processing in a local voxel
neighborhood

● Order filters: f3dmax, f3dmin, f3dmedian
● Example: Noise removal by the median filter
f3dmedian -k 3 in.f3d | f3drender -lo 90 -r 4> out.png

f3d Tools: Local Operators
Gaussian filtering

● Convolution by a Gaussian with different
widths

● Example (data smoothing):
 f3dgauss -w 2 in.f3d > out.f3d

f3d Tools: Local Operators
Gradient Magnitude Estimation

● Magnitude of the Gabor filter applied to all 3
directions, edge detection

● Example :
 f3dgradmag -w 3 in.f3d > out.f3d

-w 1 -w
3

 -w 5

f3d Tools: Local Operators
Gradient Estimation

● Convolution by a Gabor filter in all directions
● Example :
 f3dgrad -w 3 in.f3d > out.f3d

The Problem

● Volume data is often too big to fit into
memory and its processing is too slow

● Possible solutions:
– Alternative memory layouts
– Stream processing

● Task:
– Design different raster types with common API

for different tasks:
● Interactive (GUI) vs. batch processing
● Sequential vs. direct access processing
● High speed vs. low memory requirements

Algorithm Classes and Iterators

● Algorithms
– Single voxel operations
– Local operations

● Unbuffered
● Buffered

– Global operations
● Iterators (data representation hiding)
– Single voxel access sequential iterator
– Local voxel access sequential iterator
– Direct access iterator

Single Voxel Operations

● Sequential access to just the current voxel
– Write only (creating volumes)
– Read only (maximum value search)
– Read/Write – point operations

typename RASTER::VoxelIterator it;

for(it = raster>dataStartVox(F3D_RW);
it != raster>dataEndVox(); ++it) {

 *it = OP(*it);
}

Local Operators
(non-separable, buffered)

● Data access in local neighborhood required
● Data filtering – input must remain

unchanged, therefore buffering is required:
typename RASTER::BufferIterator iit;
typename RASTER::VoxelIterator oit;

for(iit = raster->dataStartBuf(F3D_READ, N), oit = raster->dataStartVox(F3D_WRITE);
iit != raster->dataEndBuf(); ++iit, ++oit)

{
float val(0);
int i,j,k;
for(i = -N/2; i <= N/ 2; i++)

for(j = -N/2; j <= N/2; j++)
for(k = -N/2; k <= N/2; k++)

val += iit.get(i, j, k) * kernel[i + N/2][j + N/2][k + N/2];
*oit = T(val);

}

Local Operators
(unbuffered)

● In some algorithms we have to use the new
value stored earlier (e.g., distance
transforms

typename RASTER::VoxelIterator it;

for(it = raster->dataStartVox(F3D_RW, N); it != raster->dataEndVox(); ++it)
{

float val(0);
int i,j,k;
for(i = -N/2; i <= N/ 2; i++)

for(j = -N/2; j <= N/ 2; j++)
for(k = -N/2; k <= N/2; k++)

val = ... it.get(i, j, k) ...
*it = T(val);

}

Local Operators
(separable, buffered)

● Separable filters:
 F(x, y, z) = X(x) * Y(y) * Z(z)
● Complexity 3n (non-separable: n3)
● Special iterator is required
– Combination of BufferIterator and VoxelIterator

Global operations

● Sometimes can be implemented as
unbuffered local operators

● Usually require direct access to data
(Fourier transform, rendering etc)

● DAIterator should be written

Different memory layouts

● Different f3dXXRaster implementations
required

● Common interface provided by iterators
● Current status: Partial implementation of
– f3dRawRaster – the trivial one
– f3dPackRaster – some compression
– f3dSwappedRaster – intermediate file storage
– f3dRLRaster, f3dBlockRaster – modified RL

compression, blocking
● Tasks: full implementation, verification,

performance evaluation, new raster designs

f3dRawRaster

● Data fully represented in a linear array
● Sequential access: ptr++
● Direct access is easy
● Problems with large data

f3dPackRaster

● Object-of-interest is usually in the middle:
– Segmentation required
– Per-row storage: skip N – represent – skip M

● Direct access is easy
● Useful for interactive

processing
● Used in iseg

Unrepresented
Background

Represented
Background

f3dRLRaster

● Object-of-interest is usually in the middle:
– Segmentation required
– Per-row storage: skip – represent

● Direct access no more
so easy

● Different possibilities,
 data dependent

● Used by Pavol in vxtRL

Unrepresented
Background

f3dBlockRaster

● Volume represented as an array of linearly
organized blocks

● Suitable for random access (rendering)
● Not all blocks represented
● Block overlap
● 2(3)-level hierarchy,

BSP, octree?

f3dSwappedRaster

● To be used in operations, which require lot
of data in memory, bur still not all

● Buffering numerous slices, the least
important stored on a HDD

● Suitable for direct access

F3dStreamRaster (1)

● Voxel and local operations require just few
slices in memory

● Processing reorganized:

LoadVolume()
For all slices
{

process slice ();
}
WriteVolume()

For all slices
{

LoadSlice()
process slice ();
WriteSlice()

}

F3dStreamRaster (2)

● Just single-run tools possible:
●

●

● They can be, however, concatenated:
●

●

● Advantages: small memory footprint, natural
parallelization

● Disadvantages: requires code modifications,
not everything can be streamed

tool in.f3d > out.f3d

tool1 in.f3d | tool2 | ... toolN > out.f3d

F3dStream (3)

● Minimal modification required:

● Some cases: temporal storage of
intermediate results in a file

● Individual approach required
● Not everything can be implemented with

small footprint(3D FFT?)

f3dVolume *s = f3dLoadRawVolume(fin);
s->addComm(cmdline.c_str());
s->addGNoise(sigma, band);
s->save(stdout);

f3dVolume *s = f3dLoadStreamVolume(fin);
s->addComm(cmdline.c_str());
s->save(stdout);
s->addGNoise(sigma, band);

What to do next?

● Implement, evaluate and write a paper
– Vis'06, deadline March 2006

● Related work
– vtk/itk (everything is a filter), openvl (iterators),

out-of-core techniques
● Implement missing representations
● Comparison: speed & memory

requirements
– Find suitable data sets

● Write the paper

Part 2

Some comments on streaming

In-memory vs. Streamed
Representations

● In-memory reps.: We usually write to the
same grid as we read from

● Streamed: we always write to a different
place

● This should be considered in iterator
implementation (what is buffered and when)

Streamed Operations (1)

● Simple reading
– A single run through the data, gathering of

information (min/max values, histogram, etc)

● Simple writing
– Create a volume from non-volumetric data in a

single run

Streamed Operations (2)

● Single-run processing/filtering
– Read/write, e.g., Gaussian filtering

– Non-stream representations
● input=output

– Stream representations
● input=stdin
● output=stdout

Streamed Operations (3)

● Multiple reads/single write
– Example:

Thresholding

– A variant: produce a multiband output

– In streaming, the input must be cached, since
no rewind is, in general, possible
– We have to tell the algorithm about this
–

1-st reading:
threshold
estimation

2-nd reading/writing:
the thresholding

itself

Input Rewinding

● Streams are
– seekable
– non-seekable

● ftell, fseek return the “Illegal seek” error
● Possible implementation:
– tell the input iterator about multiple reading

● e.g.:
– If seekable, just return the file pointer back
– If not:

● Create a tmp file, copy the input along its
processing, rewind tmp to read the data again

● This takes time, but the memory footprint is small

// store the position within the file
pos = ftell(fptr);
....
//rerturn to pos
fseek(fptr, pos, SEEK_SET);

VoxelIterator dataStartVox(int nslices, IOType mode, bool rewind=false)

Streamed Operations (4)

● Filter concatenation

● Utilize the tmp file again:
– Read input, apply the first filter, write the result

to a tmp file
– rewind the tmp file
– read the data again, apply 2-nd filter and write

● Sometimes this may be broken to two
independent operations (if meaningful)

More Complex Operations (1)

● Reusing the output bands

● Task: build a level-of-detail hierarchy of
Gaussian blurred images

● Algorithm:
– blur input by σ, write band and store to tmp1

● rewind tmp1, blur by σ, write band, store to tmp2
– rewind tmp2

● rewind tmp3

More Complex Operations (2)

● Reusing interim results

● Task: build a level-of-detail hierarchy of
gradient images
– blur input by σ, store to tmp1

● rewind tmp1, apply edge filter, write band
● rewind tmp1, blur by σ, store to tmp2
– rewind tmp2
– rewind tmp2

● rewind tmp3

More Complex Operations (3)

● Reusing interim results and output bands

● Hierarchical Watershed Transform:
– Blur input, store to tmp-a1, compute WS

regions, output band, store to tmp-b1
● Blur tmp-a1, store to tmp-a2, compute WS using

regions in tmp-b1, output band, store to tmpb2
–Blur tmp-a2

What to do next

● Make the code available:
– A subversion repository somewhere (next

week?)
● Both f3d main and development branches
● The paper

● Think about the problem and come up with
new bright ideas:
– How to implement the streaming operations

efficiently
– Inner parallelism (IO ops. vs. processing)
– Stream data management: is it possible within

a single program?

