High-Quality Volume Graphics on Consumer PC Hardware

Dušan Migra

Supervisor: Ing. Miloš Šrámek, Dr.

Data Representation

- Volume Data: stored as 3D texture or 2D texture stacks
- Continuous scalar field in 3D

$$s = f(x, y, z)$$
 $x, y, z \in \mathbb{R}$

Discrete volume: voxels

$$S_i = V_i$$

- Filtering :
 - Tri-linear interpolation
 - Bi-linear interpolation
 - High-Order filtering

Direct Volume Rendering

- Direct methods
 - Image based (ray-casting)
 - Object based (cell-projection, shear-warp, texture-based)
- Volume rendering integral: $I = \int_{0}^{D} color(\mathbf{x}(\lambda)) e^{-\int_{0}^{\lambda} extinction(\mathbf{x}(\lambda'))d\lambda'} d\lambda$
- Map data values $s(x(\lambda))$ to color $\tilde{c}(s(x(\lambda)))$ and extinction $\tau(s(x(\lambda)))$ coefficients

$$I = \int_{0}^{D} \tilde{c}(s(\boldsymbol{x}(\lambda))) e^{-\int_{0}^{\lambda} \tau(s(\boldsymbol{x}(\lambda'))) d\lambda'} d\lambda$$

Pre- and Post- Classification

Post-Classification = quality

Transfer Functions

• Maps data values to colors $\tilde{c}(s)$ and $\tau(s)$ extinctions (opacities)

- Domain:
 - by usually more than 8bit values
- Range
 - > 8bit RGBA values
- Setting TFs if difficult, unintuitive, and slow

Numerical Integration

$$I = \int_{0}^{D} \tilde{c}(s(\boldsymbol{x}(\lambda))) e^{-\int_{0}^{\lambda} \tau(s(\boldsymbol{x}(\lambda'))) d\lambda'} d\lambda \approx \sum_{i=0}^{n} \tilde{C}_{i} \prod_{j=0}^{i-1} (1 - \alpha_{j})$$

$$e^{-\sum_{i=0}^{\lambda/d} \tau \left(s(\boldsymbol{x}(id)) \right) d} = \prod_{i=0}^{\lambda/d} e^{-\tau \left(s(\boldsymbol{x}(id)) \right) d} = \prod_{i=0}^{\lambda/d} (1 - \alpha_i) \text{, where } \alpha_i \approx 1 - e^{-\tau (s(\boldsymbol{x}(id)))}$$

Back-to-front algorithm

$$\widetilde{C}'_{i} = \widetilde{C}_{i} + (1 - \alpha_{i})\widetilde{C}'_{i+1}$$

Texture-Based Volume Rendering

2D textured slices

3D textured slices

Texture-Based Volume Rendering

• 2D Textures - object aligned slices (OAS)

- Bilinear interpolation in hardware
- > Three stacks needed
- > Inconsistent sampling rates
- High performance
- Switching effects

• 3D Textures - viewport aligned slices (VAS)

- > Trilinear interpolation in hardware
- Inconsistent sampling rates
 for perspective projection
- High performance
- No switching effects

Image-Based Volume Rendering

- Pass 1: Entry point determination
- Pass 2: Ray direction determination
- Main passes 3 to M: Ray traversal
 - Rendering directed to a 2D texture

Pre-Integrated Volume Rendering

• Idea:

Split the numerical integration into two integrations:

- > one for the continuous scalar field
- > one for the transfer functions $\tilde{c}(s)$ and $\tau(s)$

Pre-Integrated Classification

• Pre-integrate all possible combinations in the TF

Slice vs Slab

• Render slab-by-slab instead of slice-by-slice

Slab = two adjacent slices

Pre-Integrated Volume Rendering

Texture fetch

- ► Each slab 2 textures
- > Use multitextures, adapt texture coordinates for projected slice
- Dependent texture fetch needed

Post-Classification 210 polygons

Pre-Integrated 70 polygons

Skull: Different transfer functions

