
1

Platform independent engine for volume 
visualization

Michal Hučko



2

Outline

■ Requirements
■ Existing solutions
■ Proposed architecture
■ Usage scenarios



3

Requirements

■ engine
 UI-less application
 defines interface
 enables various methods of visualization

■ platform independency
■ based on scene graph



4

Outline

■ Requirements
■ Existing solutions
■ Proposed architecture
■ Usage scenarios



5

Existing solutions

■ volume rendering extension for the OpenSG 
scene graph
 single node that can be used in any OpenSG 

application
 provides texture based (2D/3D) volume visualization
 abbility to use shaders
 bricking

Klein,Weiler, Ertl (2003) – A volume rendering extension for the 
OpenSG scene graph API



6

Existing solutions

■ framework for remote 3D-visualization
 applications based on OpenInventor or Cosmo3D can 

be adapted for remote versions (using the framework)
 client events are transferred to adapted application 

using CORBA interface
 results are sent back via sockets
 client modules in Java
 possibility to work on server and broadcast rendered 

images to multiple observing clients
 uses loss-less compression for final images
 fast enough even on 56k modem connections

Engel, Sommer, Ertl (2000) – A framework for interactive hardware 
acceleratedremote 3D-visualization



7

Outline

■ Requirements
■ Existing solutions
■ Proposed architecture
■ Usage scenarios



8

Proposed architecture

■ additional requirements
 possibility to act as a server (multiple autonomous 

clients)
 expandibility of the engine with new rendering methods 

without need to change engine's code
 abbility to specify various special rendering parameters

■ solution
 engine modules responsible for various functions
 each module is highly configurable
 main class managing modules
 multi-threading



9

Proposed architecture

■ data manager
 responsible for loading, storing and freeing data
 abbility to load data into textures (2D/3D) or into main 

memory (plugin can choose)
 textures are in OpenSceneGraph object
 takes care of bricking

■ plugin manager
 plugins represents rendering methods
 abstract class defining interface
 rendering plugin = overriding class
 plugins are stored in dynamically linked libraries



10

Proposed architecture

■ scene manager
 stores configuration of scene plus rendering 

parameters
 submodules for common scene elements (camera 

position, clipping geometry, etc.)
 submodules for common visualization algorithm 

parameters (transfer function, threshold, etc.)
 plugin can choose which submodules are to be used
 support for extra parameters

➔ fundamental types (integer, string, etc.)
➔ records
➔ arrays

 plugin defines which extra parameters it needs



11

Proposed architecture

■ main manager
 integrates previously mentioned managers
 defines interface through which user communicates 

with engine
 used as a main engine class when including engine 

into project
 when engine is used as a server

➔ proxy class on client side – transforms function calls to 
network messages

➔ main manager preceded by communication class – 
transforms network messages to function calls



12

Outline

■ Requirements
■ Existing solutions
■ Proposed architecture
■ Usage scenarios



13

Usage scenarios

■ Single application
 engine statically linked into GUI
 highest efficiency, need to recompile application with 

engine update
■ Local client/server

 engine running as a server (locally)
 client on the same machine communicates with the 

server via network (loopback)
 high efficiency, full separation of GUI and rendering 

engine, possible lower memory consumption
■ Remote client/server

 engine running as a server on dedicated hardware
 clients communicates with server via network
 efficiency highly dependent on client and server hw, 

network bandwidth and server load



14

Thank you for your attention


