
1

Platform independent engine for volume 
visualization

Michal Hučko



2

Outline

■ Requirements
■ Existing solutions
■ Proposed architecture
■ Usage scenarios



3

Requirements

■ engine
 UI-less application
 defines interface
 enables various methods of visualization

■ platform independency
■ based on scene graph



4

Outline

■ Requirements
■ Existing solutions
■ Proposed architecture
■ Usage scenarios



5

Existing solutions

■ volume rendering extension for the OpenSG 
scene graph
 single node that can be used in any OpenSG 

application
 provides texture based (2D/3D) volume visualization
 abbility to use shaders
 bricking

Klein,Weiler, Ertl (2003) – A volume rendering extension for the 
OpenSG scene graph API



6

Existing solutions

■ framework for remote 3D-visualization
 applications based on OpenInventor or Cosmo3D can 

be adapted for remote versions (using the framework)
 client events are transferred to adapted application 

using CORBA interface
 results are sent back via sockets
 client modules in Java
 possibility to work on server and broadcast rendered 

images to multiple observing clients
 uses loss-less compression for final images
 fast enough even on 56k modem connections

Engel, Sommer, Ertl (2000) – A framework for interactive hardware 
acceleratedremote 3D-visualization



7

Outline

■ Requirements
■ Existing solutions
■ Proposed architecture
■ Usage scenarios



8

Proposed architecture

■ additional requirements
 possibility to act as a server (multiple autonomous 

clients)
 expandibility of the engine with new rendering methods 

without need to change engine's code
 abbility to specify various special rendering parameters

■ solution
 engine modules responsible for various functions
 each module is highly configurable
 main class managing modules
 multi-threading



9

Proposed architecture

■ data manager
 responsible for loading, storing and freeing data
 abbility to load data into textures (2D/3D) or into main 

memory (plugin can choose)
 textures are in OpenSceneGraph object
 takes care of bricking

■ plugin manager
 plugins represents rendering methods
 abstract class defining interface
 rendering plugin = overriding class
 plugins are stored in dynamically linked libraries



10

Proposed architecture

■ scene manager
 stores configuration of scene plus rendering 

parameters
 submodules for common scene elements (camera 

position, clipping geometry, etc.)
 submodules for common visualization algorithm 

parameters (transfer function, threshold, etc.)
 plugin can choose which submodules are to be used
 support for extra parameters

➔ fundamental types (integer, string, etc.)
➔ records
➔ arrays

 plugin defines which extra parameters it needs



11

Proposed architecture

■ main manager
 integrates previously mentioned managers
 defines interface through which user communicates 

with engine
 used as a main engine class when including engine 

into project
 when engine is used as a server

➔ proxy class on client side – transforms function calls to 
network messages

➔ main manager preceded by communication class – 
transforms network messages to function calls



12

Outline

■ Requirements
■ Existing solutions
■ Proposed architecture
■ Usage scenarios



13

Usage scenarios

■ Single application
 engine statically linked into GUI
 highest efficiency, need to recompile application with 

engine update
■ Local client/server

 engine running as a server (locally)
 client on the same machine communicates with the 

server via network (loopback)
 high efficiency, full separation of GUI and rendering 

engine, possible lower memory consumption
■ Remote client/server

 engine running as a server on dedicated hardware
 clients communicates with server via network
 efficiency highly dependent on client and server hw, 

network bandwidth and server load



14

Thank you for your attention


