

GPU support for implicit
modeling

Juraj Starinsky

Overview

● Implicit models and modeling
● Evaluating implicit function f
● General parallel and GPU processing
● Evaluating implicit function f on GPU
● GPU integration
● GPU processing
● CPU vs GPU implicit modeling

● Model implicitly defined by function

Implicit models

f :ℝ3
ℝ

∀ P∈ℝ
3

f P =0 surface
f P 0 interior

– Continuous signal

● Complex Models
– One complex function

● Hard to control shape

Implicit modeling

● Modeling
– User interaction – fast response
– Iterative process – refinement

● Model construction
– Modeling Tree

Implicit modeling
modeling tree

● N-ary tree

Implicit modeling
modeling tree

● N-ary tree
● Final object in Root

Implicit modeling
modeling tree

● N-ary tree
● Final object in Root
● Function f(P)

– Composition of children

Implicit modeling
modeling tree

● N-ary tree
● Final object in Root
● Function f(P)

– Composition of children

● Evaluating f(P)

f P 

Implicit modeling
modeling tree

● N-ary tree
● Final object in Root
● Function f(P)

– Composition of children

● Evaluating f(P)
– Post-order tree traversal

f P 

1

2

3 4

5 6

7

8

Implicit modeling
modeling tree

● N-ary tree
● Final object in Root
● Function f(P)

– Composition of children

● Evaluating f(P)
– Post-order tree traversal

– Evaluate node f
i
 using

children's results

● Like CSG

f P 

f 1P 

f 2P 

f 3P  f 4 P 

f 5⋯ f 6P 

f 7⋯

f 8⋯

Evaluating f(P)

● Voxelization
– Volume processing
– Isosurface extracting

● Marching cubes/tetrahedra

● Ray-tracing
● Deformation
● ...

Parallel processing

● Task parallelism
– Different tasks run in parallel

● Data parallelism
– Same computations operating on

different data in parallel

● Instruction parallelism
– Some instructions within computation

can be issued in parallel

GPU processing

● Kernel – program for GPU
● Computation Thread (work-item)

– Running kernel

● Data parallelism
– Block of threads (work-group)

● Grid of threads running the same kernel in
parallel sharing some data

– Grid of blocks
● Grid of identical Blocks
● NO sharing/communication between blocks

GPU processing

GPU

Multiprocessor

Block of threads
Grid of Blocks

● Execute block on one
multiprocessor

GPU processing

GPU

Multiprocessor

Block of threads
Grid of Blocks

● Execute block on one multiprocessor
– Divide block into warps
– Whole warp runs in parallel

Warp

GPU processing

GPU

Multiprocessor

Block of threads
Grid of Blocks

● Execute block on one multiprocessor
– Divide block into warps
– Whole warp runs in parallel
– Switching warps

Warp

GPU processing

GPU

Multiprocessor

Block of threads
Grid of Blocks

● Execute block on one multiprocessor
– Divide block into warps
– Whole warp runs in parallel
– Switching warps

● Multiprocessor time slicing

Warp

GPU processing

● Data processing

Device
(GPU)
RAM

Tex

Shared
local

memory

API

API

API

API

Host
(CPU)
RAM

Host
(CPU)
RAM

API

constant
memory

API

API

Block of
Threads

Block of
Threads

Efficient GPU processing

● Data parallelism
● High arithmetic intensity

– # of AI per I/O

● Minimum syncs

Evaluating f(P) on GPU

● Evaluate f on a set of points
– Independent evaluating of points with

the same function f
● Data parallelism, minimum syncs

– Children's f's are complex functions with
some arguments

● Same constant arguments for all points
● arithmetic intensive(?)

– Input = one point P(x,y,z)
– Output = one value f(P)

Evaluating f(P) on GPU
pitfalls

● Implicit modeling systems are OOP
– Massive virtual method overloading
– GPU programming does not support OOP

● Evaluating of N-ary tree is recursive
– GPU do not support recursion/stack

● Recursion is expanded

● f(P) can be arbitrary
– Branching within f

● GPU is fast if all threads in warp follow the
same computation path

GPU integration
into implicit modeling system

● GPU programming does not support OOP
– Non-OOP f's for GPU

● Virtual method calls ~ switch statement
– Lot of branching (but same path)

– For every loaded n-ary tree, compose the
exact f's GPU source code

● No Switch statement
● Run-time compiling of GPU source
● Composed/compiled GPU source can be

saved and analyzed/reused

GPU integration
into implicit modeling system

● Evaluating of N-ary tree is recursive
– Recursion is expanded, no stack
– intermediate values are stored in local

memory – consumes registers
– Registers are limited

● Fail to execute, if too many threads in
block

● Exceeding limit will use global (slow)
memory – decreasing arithmetic intensity

GPU integration
N-ary tree traversal

● Expanded recursion storage size
– Sub-tree output = 1 value
– Node requires all values from its

subtrees (n)
– One node is being evaluated at a time
– Every visited not finished node has at

most n-1 values from its subtrees ready
– There are at most h not finished nodes

(path from root to actual visited node in a tree
of height h is at most h)

– Total at most h*(n-1)+1

GPU integration
N-ary tree traversal

● Post-order traversal
– Left – Right – Middle
– Right – Left – Middle
– If (left>right) LRM else RLM

1

2

3 4

5

6

7

6

4

2 1

3

5

7

GPU integration
branching within f

● Divergent branches are serialized
– Parallel performance decreases to serial

● Spatial coherency
– Evaluations of points close to each other

are assumed to follow the same path

GPU integration
constant arguments of f

● Only one instance of arguments
– f is same for all points

● Store in constant memory (fast)
– If it does not fit ?

● Some f's may have m2 arguments
● Texture – better caching then global mem

– Addressing math and swizzling
● Shared mem – need copy from

global/texture once for every block of
threads

GPU processing
general case

Kernel

Set of
Points

Block of
Threads

Warp

GPU processing
large tree

Kernel B

Kernel A

Kernel C

Kernel

● Split tree into sub-trees
● Every sub-tree = different kernel

BA

GPU processing
large tree

Kernel B

Kernel A

Kernel C

Kernel A

Kernel B

Kernel C

BA

A B

GPU processing
sub-trees

Kernel A

Kernel B

Kernel C

● Switching kernels
● Buffers for intermediate

values
– Buffer size ~ # of kernel

switches

● Kernels on the same level
can be processed in parallel

– Task parallelism
● Computation streams

A B

GPU processing
sub-trees

Kernel A

Kernel B

Kernel C

● Large tree but few points
– No utilization for large

number of threads ?

● Parallel processing of multiple
subtrees within thread block

– Exploit warps !

A

GPU processing
sub-trees in thread block

Kernel A

Kernel B

Block of
Threads

Warp1

Block of
Points

● Kernel
– If (threadId%warpsize==0)

● KernelA(P);

B

GPU processing
sub-trees in thread block

Kernel A

Kernel B

Block of
Threads

Warp2

Block of
Points

● Kernel
– If (threadId % warpsize==0)

● KernelA(P);

– Else
● KernelB(P);

GPU vs CPU
implicit modeling

● Interactive modeling
– interactive updating
– interactive visualization

● Volume data
● Mesh data
● Ray-tracing

GPU vs CPU
implicit modeling

● Interactive modeling
– interactive updating
– interactive visualization (mesh data)

● CPU
– Updating - CPU producing triangulation

● Marching cubes on CPU

– Visualization – GPU requires triangulation
● Transfer triangulation from CPU to GPU for

every update - slow

GPU vs CPU
implicit modeling

● Interactive modeling
– interactive updating
– interactive visualization (mesh data)

● GPU
– Updating - GPU producing triangulation

● Marching cubes on GPU

– Visualization – GPU requires triangulation
● Everything is done on GPU – no slow

transfer needed

GPU vs CPU
implicit modeling

● GPU raytracing implicit models
– Interactive framerate ?

● for camera movement use triangulated
data

● for static camera - raytrace

Multiple parallel computations

● asynchronous operations
– copy CPU <-> GPU
– GPU processing
– CPU is free to work

● parallel async operations
– multiple computing streams

● own copying & processing

CPU

GPU
computing

stream

CPU
computing

GPU
computing

stream

CPU

References

● NVIDIA CUDA Programming Guide 1.0, 1.1, 2.0, 2.1

● The CUDA Compiler Driver NVCC

● Nvidia Geforce GTX 200 GPU architecture overview

● AMD Stream computing user guide

● AMD Entering the golden age of Heterogeneous Computing

● PODLOZHNYUK V.: Image convolution with CUDA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

