

Eigenvectors & eigenvalues

● Eigenvector e of a n x n matrix M
– e*M = λ*e

– Special vector - does not change direction

● Symmetric matrix M=MT

● Orthogonal matrix M*MT=MT*M=I (M-1=MT)
● M is real symmetric

– e
i
 & λ

i
 are real

– e
i
's are orthogonal

Eigenvectors & eigenvalues

● e*M = λ*e
● e*M – λ*e = 0
● M*e – λ*e*I = 0
● M*e – λ*I*e = 0

● (M – λ*I) * e = 0
– e is ᚆ to row/columns of (M – λ*I)

● det(M – λ*I) = 0
– Polynomial => roots = eigenvalues

Hessian

[
∂ f 2

∂ x0
2

∂ f 2

∂ x0∂ x1

⋯
∂ f 2

∂ x0∂ x n−1

∂ f 2

∂ x1∂ x0

∂ f 2

∂ x1
2

⋯
∂ f 2

∂ x1∂ x n−1

⋮ ⋮ ⋱ ⋮

∂ f 2

∂ xn−1∂ x0

∂ f 2

∂ xn−1∂ x1

⋯
∂ f 2

∂ xn−1
2

]

[
∂ f 2

∂ x2

∂ f 2

∂ x ∂ y
∂ f 2

∂ x ∂ z

∂ f 2

∂ y∂ x
∂ f 2

∂ y 2

∂ f 2

∂ y∂ z

∂ f 2

∂ z∂ x
∂ f 2

∂ z∂ y
∂ f 2

∂ z2
]

f x  is C2 on O x  ⇒
∂ f 2x 
∂ xa∂ xb

=
∂ f 2x 
∂ xb∂ xa

⇒ Hessian is symmetric

Matrix H(f) of 2nd partial derivates

We are interested in 3D case:

Computing Hessian

● Central differences of central differences
● 2nd derivation of reconstruction filter

– Filter is at least at least C2

Eigenvectors of a Hessian

● Hessian is real and symmetric
– Eigenvalues are real
– Eigenvertors are real and orthogonal

v⋅H  f ⋅vT=2nd derivation in direction of v where∥v∥=1

max v⋅H  f ⋅vT ;∀v =0

min v⋅H  f ⋅vT ;∀v =n−1

e0⋅H  f ⋅e0
T=0

en−1⋅H  f ⋅ en−1
T=n−1

Computing eigenvalues and
eigenvectors

● Various iterative methods
– GSL real symmetric matrix

● symmetric bidiagonalization & QR reduction

● For 3x3 symmetric matrix
– Iterative methods are slow/inaccurate

– Direct method
● 1. find eigenvalues as roots of a polynomial
● 2. compute eigenvectors

1. Find eigenvalues

● e*H = λ*e => (H – λ*I)*e = 0
● det(H – λ*I) = 0

– For 3x3 matrix, det is polynomial of 3rd degree

– Eigenvalues = roots of polynomial
● sin, cos, atan2, sqrt, 1/x^3, …

–

–

–

– ~ 5x faster then GSL on CPU with FP64

1.012

2.01=2

3.0=1=2

2. compute eigenvectors

● e*H = λ*e => (H – λ*I)*e = 0
● e is ᚆ to row/columns of (H – λ*I)

– Rows r
0
, r

1
, r

2

● At most 2 linearly independent rows !
– Need rank(H – λ*I)

● Elimination method
● mul, div

2. compute eigenvectors

● two independent rows

– Find rows r
a
 & r

b
 in (H – λ

i
*I)

– e
i
 = normalize(r

a
 x r

b
)

● e
i
 is ᚆ to all rows of (H – λ

i
*I) !

● one independent row r

– fixed e
0
, variable e

1
 & e

2

● e
1
 & e

2
 lie in plane ᚆ to r

● H – λ*I = 0

– Any vector is eigenvector

012

01=2

0=1=2

Performance

● GSL
– λ : e ~ 2.666 : 1

● Direct method
– λ : e ~ 1 : 1.51

Numerical issues

● Eigenvalues
– Round-off errors may produce “distinct”

eigenvalues !

● Eigenvectors
– Elimination method may produce

“independent” rows !

∀ i : rank H−i I =2⇔012

∀ i : rank H−i I =0⇔0=1=2

rank H−0 I =2∧rank H−1,2 I =1⇔01=2

rank H−i I multiplicity of i=3

Numerical issues
eigenvalues

● Hessian normalization
– Find s=max(abs(H[i][j]))

– Scale H by 1/s if s > 1.0

– Compute eigenvalues (root finding)

– Scale eigenvalues by s

● Use higher precision

Numerical issues
Eigenvectors

● A = H – λ*I
● Set rank=0
● Choose r and c : m=A[r][c]=max(abs(A[i][j]))
● If m~0 return rank
● Divide row r by m
● eliminate row r from A by column c

– A[i] = A[i] – A[i][c] * A[r]

● Increment rank and choose new r and c...

Higher precision on FP32 limited
HW

● FP32 – Single, FP64 – Double
● single_x2 – data type of 2x FP32

– Use native FP32 support with additional native
computations

– Result = single_x2[0] + single_x2[1]

– single_x2 in not Double !

● Operator x

– A x B != A x
single

 B

– err(A x B) = A x B - A x
single

 B

Higher precision on FP32 limited
HW

● Sum(A , B) |A| >=|B|

– sum = A +
single

 B

– err = B -
single

 (S -
single

 A)

● Mul(A, B)
– mul=A *

single
 B

– A_x2 = split(A) B_x2 = split(B)

– err=((A_x2[0]*
single

B_x2[0] –
single

 mul) +
single

A_x2[0]*
single

B_x2[1]+
single

 A_x2[1] *
single

B_x2[0]) +
single

A_x2[1]*
single

B_x2[1]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

