Eigenvectors \& eigenvalues

- Eigenvector e of a $n \times n$ matrix M
- $e^{*} M=\lambda^{*} e$
- Special vector - does not change direction
- Symmetric matrix $M=M^{\top}$
- Orthogonal matrix $M^{*} M^{\top}=M^{\top^{*}} M=I\left(M^{-1}=M^{\top}\right)$
- M is real symmetric
$-e_{i} \& \lambda_{i}$ are real
- e's are orthogonal

Eigenvectors \& eigenvalues

- $e^{*} \mathrm{M}=\lambda^{*} \mathrm{e}$
- $e^{*} M-\lambda^{*} e=0$
- $\mathrm{M}^{*} \mathrm{e}-\lambda^{*} \mathrm{e}^{*} \mathrm{I}=0$
- $\mathrm{M}^{*} \mathrm{e}-\lambda^{*} \mathrm{I}^{*} \mathrm{e}=0$
- $\left(M-\lambda^{*} I\right) * e=0$
$-e$ is \perp to row/columns of $\left(M-\lambda^{*}\right)$
- $\operatorname{det}\left(\mathrm{M}-\lambda^{*} \mathrm{I}\right)=0$
- Polynomial => roots = eigenvalues

Hessian

Matrix $\mathbf{H}(\mathrm{f})$ of $\mathbf{2}^{\text {nd }}$ partial derivates $\left[\begin{array}{cccc}\frac{\partial f^{2}}{\partial x_{0}^{2}} & \frac{\partial f^{2}}{\partial x_{0} \partial x_{1}} & \cdots & \frac{\partial f^{2}}{\partial x_{0} \partial x_{n-1}} \\ \frac{\partial f^{2}}{\partial x_{1} \partial x_{0}} & \frac{\partial f^{2}}{\partial x_{1}^{2}} & \cdots & \frac{\partial f^{2}}{\partial x_{1} \partial x_{n-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f^{2}}{\partial x_{n-1} \partial x_{0}} & \frac{\partial f^{2}}{\partial x_{n-1} \partial x_{1}} & \cdots & \frac{\partial f^{2}}{\partial x_{n-1}^{2}}\end{array}\right]$
$f(\vec{x})$ is C^{2} on $O(\vec{x}) \Rightarrow \frac{\partial f^{2}(\vec{x})}{\partial x_{a} \partial x_{b}}=\frac{\partial f^{2}(\vec{x})}{\partial x_{b} \partial x_{a}} \Rightarrow$ Hessian is symmetric

We are interested in 3D case:

$$
\left[\begin{array}{ccc}
\frac{\partial f^{2}}{\partial x^{2}} & \frac{\partial f^{2}}{\partial x \partial y} & \frac{\partial f^{2}}{\partial x \partial z} \\
\frac{\partial f^{2}}{\partial y \partial x} & \frac{\partial f^{2}}{\partial y^{2}} & \frac{\partial f^{2}}{\partial y \partial z} \\
\frac{\partial f^{2}}{\partial z \partial x} & \frac{\partial f^{2}}{\partial z \partial y} & \frac{\partial f^{2}}{\partial z^{2}}
\end{array}\right]
$$

Computing Hessian

- Central differences of central differences
- $2^{\text {nd }}$ derivation of reconstruction filter
- Filter is at least at least C^{2}

Eigenvectors of a Hessian

$\vec{v} \cdot H(f) \cdot \vec{v}^{T}=2^{n d}$ derivation in direction of \vec{v} where $\|\vec{v}\|=1$

- Hessian is real and symmetric
- Eigenvalues are real
- Eigenvertors are real and orthogonal

$$
\begin{gathered}
\max \left(\vec{v} \cdot H(f) \cdot \vec{v}^{T} ; \forall \vec{v}\right)=\lambda_{0} \\
\min \left(\vec{v} \cdot H(f) \cdot \vec{v}^{T} ; \forall \vec{v}\right)=\lambda_{n-1} \\
\vec{e}_{0} \cdot H(f) \cdot \vec{e}_{0}^{T}=\lambda_{0} \\
e_{n-1} \cdot H(f) \cdot e_{n-1}{ }^{T}=\lambda_{n-1}
\end{gathered}
$$

Computing eigenvalues and eigenvectors

- Various iterative methods
- GSL real symmetric matrix
- symmetric bidiagonalization \& QR reduction
- For 3×3 symmetric matrix
- Iterative methods are slow/inaccurate
- Direct method
- 1. find eigenvalues as roots of a polynomial
- 2. compute eigenvectors

1. Find eigenvalues

- $\mathrm{e}^{*} \mathrm{H}=\lambda^{*} \mathrm{e}=>\left(\mathrm{H}-\lambda^{*} \mathrm{I}\right)^{*} \mathrm{e}=0$
- $\operatorname{det}\left(\mathrm{H}-\lambda^{*} \mathrm{I}\right)=0$
- For 3×3 matrix, det is polynomial of $3^{\text {rd }}$ degree
- Eigenvalues = roots of polynomial
- sin, cos, atan2, sqrt, $1 / x^{\wedge} 3, \ldots$
$-1 . \lambda_{0}>\lambda_{1}>\lambda_{2}$
- 2. $\lambda_{0}>\lambda_{1}=\lambda_{2}$
- 3. $\lambda_{0}=\lambda_{1}=\lambda_{2}$
$-\sim 5 x$ faster then GSL on CPU with FP64

2. compute eigenvectors

- $\mathrm{e}^{*} \mathrm{H}=\lambda^{*} \mathrm{e}=>\left(\mathrm{H}-\lambda^{*} \mathrm{I}\right)^{*} \mathrm{e}=0$
- e is ${ }^{\perp}$ to row/columns of $\left(\mathrm{H}-\lambda^{*} \mathrm{I}\right)$
- Rows r_{0}, r_{1}, r_{2}
- At most 2 linearly independent rows !
- Need rank(H - λ^{*})
- Elimination method
- mul, div

2. compute eigenvectors

- two independent rows $\quad \lambda_{0}>\lambda_{1}>\lambda_{2}$
- Find rows $r_{a} \& r_{b}$ in $\left(H-\lambda_{i}{ }^{*}\right)$
- $e_{i}=$ normalize $\left(r_{a} \times r_{b}\right)$
- e_{i} is ${ }^{\perp}$ to all rows of $\left(\mathrm{H}-\lambda_{i}^{*}{ }^{*}\right)$!
- one independent row $r \quad \lambda_{0}>\lambda_{1}=\lambda_{2}$
- fixed e_{0}, variable $e_{1} \& e_{2}$
- $e_{1} \& e_{2}$ lie in plane ${ }^{\perp}$ to r
- $\mathrm{H}-\lambda^{*} \mathrm{I}=0$

$$
\lambda_{0}=\lambda_{1}=\lambda_{2}
$$

- Any vector is eigenvector

Performance

- GSL
$-\lambda$: e 2.666: 1
- Direct method

$$
-\lambda: e \sim 1: 1.51
$$

Numerical issues

$$
\begin{aligned}
& \forall i: \operatorname{rank}\left(H-\lambda_{i} I\right)=2 \Leftrightarrow \lambda_{0}>\lambda_{1}>\lambda_{2} \\
& \forall i: \operatorname{rank}\left(H-\lambda_{i} I\right)=0 \Leftrightarrow \lambda_{0}=\lambda_{1}=\lambda_{2}
\end{aligned}
$$

$$
\operatorname{rank}\left(H-\lambda_{0} I\right)=2 \wedge \operatorname{rank}\left(H-\lambda_{1,2} I\right)=1 \Leftrightarrow \lambda_{0}>\lambda_{1}=\lambda_{2}
$$

$$
\operatorname{rank}\left(H-\lambda_{i} I\right)+\text { multiplicity of } \lambda_{i}=3
$$

- Eigenvalues
- Round-off errors may produce "distinct" eigenvalues!
- Eigenvectors
- Elimination method may produce "independent" rows!

Numerical issues eigenvalues

- Hessian normalization
- Find $s=m a x(\operatorname{abs}(H[i][j]))$
- Scale H by $1 / \mathrm{s}$ if $\mathrm{s}>1.0$
- Compute eigenvalues (root finding)
- Scale eigenvalues by s
- Use higher precision

Numerical issues Eigenvectors

- $A=H-\lambda^{*}$
- Set rank=0
- Choose r and $c: m=A[r][c]=\max (a b s(A[i][j]))$
- If $\mathrm{m} \sim 0$ return rank
- Divide row r by m
- eliminate row r from A by column c

$$
-A[i]=A[i]-A[i][c] \text { * } A[r]
$$

- Increment rank and choose new r and c...

Higher precision on FP32 limited HW

- FP32 - Single, FP64 - Double
- single_x2 - data type of 2x FP32
- Use native FP32 support with additional native computations
- Result = single_x2[0] + single_x2[1]
- single_x2 in not Double!
- Operator x

$$
\begin{aligned}
& -A \times B!=A x_{\text {single }} B \\
& -\operatorname{err}(A \times B)=A \times B-A x_{\text {single }} B
\end{aligned}
$$

Higher precision on FP32 limited HW

- Sum(A, B) $|\mathrm{A}|>=|\mathrm{B}|$
- sum $=A+{ }_{\text {single }} B$
$-\operatorname{err}=B-_{\text {single }}\left(S-_{\text {single }} A\right)$
- $\operatorname{Mul}(\mathrm{A}, \mathrm{B})$
- mul=A * ${ }_{\text {single }} B$
- A_x2 = split(A) B_x2 = split(B)
- err=((A_x2[0] ${ }_{\text {single }} B_{-x 2[0]}^{-}$single $\left.m u l\right)+_{\text {single }}$ $\left.A_{-x 2}[0]^{*}{ }_{\text {single }} B_{-} x 2[1]+{ }_{\text {single }} A _x 2[1]{ }_{\text {single }} B+x 2[0]\right)+_{\text {single }}$ A_x2[1] ${ }_{\text {single }} B _x 2[1]$

