# Medical Image Registration using Information theory measures

Ivan Vnučko KAI FMFI UK Bratislava 2005

### Outline

- Introduction
- Classification
- Registration process
   Transformation model
   Similarity metric
   Optimization method
   Challenges
   Recent methods

### Image registration

 Process of estimating an optimal transformation between two images or image and a model
 Optimal transformation – optimum of some measure



## **Medical applications**

Fusion of data from different modalities

Anatomical (CT, MRI,...)

Functional (fMRI, SPECT, PET,...)

Studying time changes

Monitoring progress of disease, comparison of preand post-intervention

Image guided therapy

- Planning surgery or radiotherapy on images registered to patient
- Atlas

Classification of structures based on registration to atlas

#### Classification

- 9 criteria classification Van den Elsen, Pol, Viergever
- Registration basis
  - Extrinsic
    - Invasive fiducials, stereotactic frame
    - Non-invasive adapters, markers
  - Intrinsic
    - Landmark anatomical, geometrical
    - Segmentation rigid, deformable
    - Voxel-property based properties of the image content
  - Non-image based calibrated sensors

#### **Classification II.**

#### Other criteria:

- Dimension 2D/2D, 2D/3D, time
- Nature of transformation rigid, affine, projective, curved
- Domain of transformation global, local
- Interaction interactive, semi-automatic, automatic
- Optimization procedure parameters computed, searched for
- Subject intra-subject, inter-subject, atlas
- Object
- Type of registration multimodality, monomodality,...

#### **Registration procedure**

#### Processing flow:



#### **Transformation model**

#### Transformation model

- Rigid 6 parameters (3D), simple
- Affine 12 parameters, crude approximation to non-rigid
- Projective, perspective
- Non-rigid, elastic, curved
  - Diffeomorphisms (e.g. fluid models), B-splines, thin-plate splines, FFD
  - Use of smoothness constraints, regularization term
- Local piecewise registration, global
- Rectification correction of distortions with known models prior to registration
  - Can simplify expected transformation model
  - CT gantry tilt affine without translation
  - Izotropic scaling
  - Projections to 2D mostly curved, for example "pincussion" or barrel distortion
  - MR non-uniform gradient field due to scanner imperfections or inductions

#### Optimization

- Most voxel-property based methods use searching for parameters – iterative process
- With derivatives or without derivatives
- Stochastic
  - Simulated annealing
  - Time-consuming
- Deterministic
  - Powell, Levenberg-Marquardt, …
  - Faster, but problems with many local extrema
  - Multi-scale techniques
- Capture range searching for optima, which is global only in some range, could be local only

## **Voxel similarity measures**

Computed from all voxels or from a subset

- Regular grid
- Random voxels
- Segmented ROI
- Preprocessing blur to avoid alias artifacts
- Computed from intensities or properties
   Gradients,...
- Computed only from overlapping voxels
  - Actual transformation dependent
- Grouping of intensity values

bins, classes

#### Voxel similarity measures II.

#### Squares of intensity differences

- Basic measure
- Assumption: corresponding voxels have same intesities, for Gaussian noise it's optimum
- Pre-segmentation compute only on regions with small changes
- Correlation coefficient
  - Assumption: intensities are linearly related
- Ratio-image uniformity
  - Ratio-image dividing all voxels in A by voxels in B
  - Minimizing normalized standard deviation
- Partitioned intensity uniformity (PIU)
  - Partitioned intensities in A, for each partition histogram of correspondent voxel intensities in B
  - Normalized standard deviation minimized

## Joint histogram

2D histogram of co-occurrences of image values – joint histogram or feature space
 aligned images have focused histogram, by misalign dispersion grows
 ⇒ minimizing dispersion (some it's measure)
 ⇒ the best alignment









# Joint probability distribution (pdf)

- Normalized joint histogram joint pdf estimation
- Joint pdf changes with transformation
- Calculate measures from joint pdf to optimize transformation
- Used

Discrete estimation of joint pdf
 normalized histogram
 Continuous pdf estimation
 Gaussian, Parzen windows

# Entropy

- Measure of information, uncertainty
- Shannon  $H(X) = -\sum p_i \log p_i$
- Continuous RV differential entropy H(X) = -  $\int p(x) \log(p(x)) dx$
- More than 20 other entropy definitions functional

Conditional entropy

 $H(X) = -\int p(x) \log(p(x|y)) dx$ 

Joint entropy

 $H(X) = -\int p(x) \log(p(x,y)) dx$ 

#### Kullback – Leiber distance (KLD)

 $D(p,q) = \int p(x,y) \log (p(x,y)/q(x,y)) dxdy$ 

"distance" between pdf's, asymmetric

KLD as an alignment measure:

minimize distance of data to some expected distribution

maximize distance of data to some unwanted distribution

# Joint and conditional entropy

 maximizing the KLD of joint pdf from constant distribution is minimizing joint entropy:

 $D(p,c) = \int p(x,y) \log (p(x,y)/c) dxdy \approx -H(X,Y)$ 

maximizing the KLD of joint pdf from one of the marginal distributions is maximizing conditional entropy:

 $D(p,cm) = \int p(x,y) \log (p(x,y)/cm(x)) dxdy \approx H(X|Y)$ maximizing the KLD of joint pdf from joint pdf if marginal were independent (m(x)n(y)) is maximizing mutual information:

 $D(p,mn) = \int p(x,y) \log (p(x,y)/m(x)n(y)) dxdy = I(X,Y)$ 

#### **Mutual information**

Maximizing the distance of joint distribution from joint distribution of independent variables:

 $D(p,mn) = \int p(x,y) \log (p(x,y)/m(x)n(y)) dxdy = I(X,Y)$ 

- I(X,Y) = H(Y) H(Y|X) = H(X) H(X|Y)
  - MI is the loss of uncertainty in Y (or X) when X (or Y) is known

$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$

- Maximizing the MI is equivalent to maximizing marginal entropies and minimizing the joint entropy (last term)
- Advantage in using mutual info over joint entropy individual input's entropies are included

#### **Properties of MI**

#### $\blacksquare I(A,B) = I(B,A)$

Symmetry

 $\blacksquare I(A,A) = H(A)$ 

MI of a message to itself is it's entropy

I(A,B) <= H(A), I(A,B) <= H(B)</p>

Info each message contains about the other cannot be greater than the info they themselves contain

#### I(A,B) >= 0

Cannot increase uncertainty in A by knowing B

If A, B are independent then I(A,B) = 0

#### Improvements to MI concept

#### Normalized MI

- $\blacksquare NMI(A,B) = (H(A) + H(B))/H(A,B)$
- Tries to overcome the overlap problem of MI
- Entropy correlation coefficient
  - = ECC(A,B) = 2 2/NMI(A,B)

#### Connected region labeling

- Regions in M => label image L
  - automatic/manual segmentation
  - anatomical features
- I(M,L,N) = H(M) + H(L) + H(N) H(M,L,N)
- M, L are registered information between N and M,L
   I(M,L,N) = H(M,L) + H(N) H(M,L,N)

## Challenges

- From Pluim, Maintz, Viergever in IEEE Transactions on medical imaging 2003:
- Curved registration
  - Physically realistic deformations, not only regularization
- Registration of 3 or more images
  - How to find optimum for more transformations, and if it exists
- Inter-subject registration
- Some combinations of modalities
  - Ultrasound

# Challenges II

Intraoperative registration

- Patient position verification in radiotherapy, correction for tissue deformation
- Fast matching to poor quality image with deformations

Including spatial information to entropy based measures

Shannon's entropy is based on assumption, that all voxels are uncorrelated

2D/3D registration, specially slice to volume

Need for Digitally Reconstructed Radiographs (DDR)

#### **Recent methods**

- Cumulative residual entropy Vang, Vemuri, Rao, Chen in proc. of ICCV'03
  - Alternative entropy definition
- Joint class histograms Chan, Chung, Yu et al. in proc. of CVPR'03
  - Reduction of intensity values and their mapping to classes
- Information metric Zhang, Rangarajan in proceedings of CVPR'04
  - "Near" MI measure, but a pseudometric
  - Extendable to multiple images case
- MI of Regions Russakoff et al. in proc. of ECCV'04
  - Spatial information

#### Cumulative residual entropy (CRE)

alternative entropy definition

uses cumulative distribution function (cdf) instead of pdf:

 $H(X) = -\int P(|X| > \lambda) \log(P(|X| > \lambda)) d\lambda$ 

can be computed from samples

conditional CRE:

 $H(X|Y) = -\int P(|X|>x|Y) \log(P(|X|>x|Y)) dx$ cross - CRE (CCRE):

C(X,Y) = H(X) - E(H(X|Y))

#### Information metric

 $\rho(X,Y) = H(X|Y) + H(Y|X)$ 

Pseudometric

 $(\rho(X,Y) = 0 \text{ if } X = f(Y))$ 

 $\rho(X,Y) = H(X,Y) - MI(X,Y)$ 

Can be easily extended to multiple image case:

•  $\rho(X_1,...,X_n) = \sum^n H(X_i|X_1,...,X_{i-1},X_{i+1},...,X_n)$ 

Because of computational complexity of p(X,Y,Z,...) upper bound for ρ (a metric too) used

#### Joint class histogram

- Class labels ψ<sub>1</sub>, ψ<sub>2</sub>
- Segmentation => voxel classifications
  - $L_1: X_1 \rightarrow \psi_1, L_2: X_2 \rightarrow \psi_2$
- Mapping relation R:  $\psi_1 \times \psi_2$
- Expected joint class histogram (EH)
  - for all  $x_2$  from  $X_2$  increase bin( $L_1(x_1), L_2(x_2)$ )
  - $x_1$ : randomly from  $X_1$ , so that  $bin(L_1(x_1), L_2(x_2))$  is from R
  - normalize
- Observed class histogram (O(T)) for transformation T
- Measure KLD(O(T), EH)

# **MI of Regions**

Adding spatial information to MI concept
Vector of neighbors of a pixel
Curse of dimensionality

