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Image registration

B Process of estimating an optimal transformation
between two images or image and a model

= Optimal transformation — optimum of some
measure




Medical applications

® Fusion of data from different modalities
Anatomical (CT, MRI,...)
Functional (fMRI, SPECT, PET,...)

B Studying time changes

Monitoring progress ofi disease, comparison of pre-
and post-intervention

" |mage guided therapy

Planning surgery: or radiotherapy on iImages
registered to patient

= Atlas

Classification of structures based on registration to
atlas



Classification

® O criteria classification Van den Elsen, Pol,
\iergever

® Registration basis

=e
B |nvasive — fiducials, stereotactic frame
® Non-invasive — adapters, markers
Intrinsic
® | andmark — anatomical, geometrical
B Segmentation — rigid, deformable
m \/oxel—property based — properties of the image content

Non-image based — calibrated sensors



Classification Il.

® Other criteria:
Dimension — 2D/2D, 2D/3D, time

Nature of transformation — rigid, affine, projective,
curved

Domain of transtoermation — gloebal, local
Interaction — interactive, semi-automatic, automatic

Optimization procedure — parameters computed,
searched for

Subject — intra-subject, inter-subject, atlas
Object
Type of registration — multimodality, menomodality,...



Registration procedure

® Processing flow:
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Transformation model

®  Transformation model
Rigid - 6 parameters (3D), simple
Affine — 12 parameters, crude approximation to non-rigid
Projective, perspective
Non-rigid, elastic, curved
m Diffeomorphisms (e.g. fluid models), B-splines, thin-plate splines, FFD
m Use of smoothness constraints, regularization term

Local — piecewise registration, global
®  Rectification — correction of distortions with known models prior to
registration
Can simplify: expected transformation model
CT gantry tilt — affine without translation
|zotropic scaling

Projections to 2D — mostly curved, for example “pincussion” or barrel
distortion

MR'— non-uniform gradient field due to scanner imperfections or
Inductions



Optimization

Most voxel-property based methods use searching for
parameters — iterative process

With derivatives or without derivatives

Stochastic
Simulated annealing
Time-consuming

Deterministic
Powell, Levenberg-Marquardt, ...
Faster, but problems with many: local extrema
Multi-scale techniques

Capture range — searching for optima, which is global
only in seme range, could be local only.



Voxel similarity measures

Computed from all voxels or from a subset
Regular grid
Random voxels
Segmented RO
Preprocessing — blur to avoid alias artifacts
Computed from intensities or properties
Gradients,...
Computed only from overlapping voxels
Actual transformation dependent
Grouping of intensity values
bins, classes



Voxel similarity measures 11.

Squares of intensity differences
Basic measure
Assumption: cortesponding voxels have same intesities, for Gaussian
noise 1t’s optimum
Pre-segmentation — compute only on regions with small changes
Correlation coefficient
Assumption: intensities are linearly related
Ratio-image uniformity
Ratio-image — dividing all voxels in' A by voxels in B
Minimizing normalized standard deviation
Partitioned intensity uniformity (PIU)

Partitioned intensities 1n A, for each partition histogram of cotrespondent
voxel intensities in B

Normalized standard deviation minimized



Joint histogram

m 2D histogram of co-occurrences of image
values — joint histogram or feature space

m aligned images have focused! histogram,
by misalign dispersion grows

U minimizing dispersion (some It's measure)
1 the best alignment

\ .



Joint probability distribution
(pdf)

® Normalized joint histogram — joint pdf estimation
= Joint pdf changes with transformation

® Calculate measures from joint pdf to optimize
transformation

= Used

Discrete estimation of joint pdf
= normalized histogram

Continuous pdf estimation
®m Gaussian, Parzen windows



Entropy

® Measure of information, uncertainty
m Shannon — H(X) = -> p, log p.

® Continuous RV — differential entropy.

H(X) = - | p(x) log(p(x)) dx

® More than 20 other entropy definitions —
functional

® Conditional entropy

H(X) = - | p(x) log(p(xy)) dx
= Joint entropy

H(X) = - I p(x) log(p(x.y)) dx




Kullback — Leiber distance (KLD)

D(p.,q) = p(x.y) log (p(x,y)/a(x.y)) dxdy
m “distance” between pdf's, asymmetric

m KLDras an alignment measure:

minimize distance of data to some expected
distribution

maximize distance of data to some unwanted
distribution



Joint and conditional entropy

® maximizing the KLD of joint pdf from constant distribution
IS minimizing joint entropy:
D(p,c) = I p(x.y) log (p(x.y)/c) dxdy = -H(X.Y)
" maximizing the KLD of joint pdf from one of the marginal
distributions IS maximizing conditional entropy:

D(p,cm) = | p(x.y) log (p(x,y)/cm(x)) dxdy = H(X]Y)
® maximizing the KLD of joint pdf from joint pdf if marginal
were independent (m(x)n(y)) Is maximizing mutual
iInformation:

D(p,mn) = p(x.y) log (p(x,y)/m(x)n(y)) dxdy = 1(X,Y)



Mutual information

® Maximizing the distance of joint distribution from joint
distribution of independent variables:
D(p,mn) = | p(x,y) log (p(xy)/m(x)n(y)) dxdy = I(X,Y)
B O Y) = HY) = HY]X) = HOX) = HOXY)
Mifis the loss of uncertainty in Y (or X) when X (or Y) is known
O Y) = HOX) + H(Y) = HOX, YY)

Maximizing the Ml is equivalent tor maximizing marginal
entropies and minimizing the joint entropy (last term)

Advantage in using mutual info over joint entropy: - individual
iInput’s entropies are included



Properties of MI

I(A,B) = I(B,A)
Symmetry
I(A,A) = H(A)

M| of @ message to itself is it's entropy
I(A,B) <= H(A), I(A,B) <= H(B)

Info each message contains about the other cannot
be greater than the info they themselves contain

I(A,B)>=0
Cannot increase uncertainty in A by knowing B

If A, B are independent then I(A,B) = 0



Improvements to Ml concept

= Normalized Mi

NMI(A,B) = (H(A) + H(B))/H(A,B)

Tries to overcome the overlap problem of M
® Entropy correlation coefficient

ECC(A,B) = 2— 2/NMI(A,B)
® Connected region labeling

Regions in M => labellimage L

B gutomatic/manual segmentation
B anatomical features

I[(MLLE,N) = H(M) + H(L) + H(N) = H(M,L,N)
M, L are registered — information between N and M,L
= [(M,L,N) = H(M,L) + H(N) — H(M,L,N)



Challenges

® From Pluim, Maintz, Viergever in IEEE
Transactions on medical imaging 2003:

® Curved registration

Physically realistic deformations, not only
regularization

m Registration ofi 3 or more images

How: to find optimum for more transformations, and if
It exists

" |nter-subject registration

B Some combinations of modalities
Ultrasound



Challenges i

® |ntraoperative registration

Patient position verification in radiotherapy, correction
for tissue deformation

Fast matching to poor quality image with deformations

" |ncluding spatial information to entropy based
measures

Shannon’'s entropy Is based on assumption, that all
voxels are uncorrelated

m 2D/3D registration, specially slice to volume
Need for Digitally Reconstructed Radiographs (DDR)



Recent methods

Cumulative residual entropy — Vang, Vemuri, Rao, Chen
in proc. of ICCV'03

Alternative entropy definition

Joint class histoegrams - Chan, Chung, Yuiet al. in proc.
of CVPR03

Reduction of intensity values and their mapping to: classes

Information metric - Zhang, Rangarajan in proceedings
of CVPR'04

“‘Near” Ml measure, but a pseudometric
Extendable to multiple images case

MI of Regions — Russakoff et al. in proc. of ECCV 04

Spatial infoermation



Cumulative residual entropy
(CRE)

alternative entropy definition

uses cumulative distribution function (cdf)
instead of pdf:

H(X) = - I P(IX|>A) log(P([X|>A)) dA
can be computed from samples
conditional CRE:
HXIY) = - [ P(IX[>X]Y) log(P(IX[>X]Y)) dx
cross — CRE (CCRE):
CX,Y) = H(X) — E(FH(X]Y))



Information metric

P(X,Y) = H(X]Y) + H(Y[X)

Pseudometric
(P(OX,Y) = 01 X =1(Y))

(X, Y) = HOX, Y) = MI(X,Y)

Can be easily extended to multiple image case:
Oy Xe) = 21 HOKIX o X XX

Because of computational complexity of p(X,Y,Z....)
upper bound for p (a metric too) used



Joint class histogram

Class labels - w,, W,

Segmentation => voxel classifications
Li: X, > w,, Ly X, -> g,
Viapping relation — R: W, X W,
Expected joint class histogrami (EH)
for all x, from X, increase bin(L,(x,), L,(X,))
X,: randomly from X, so that bin(L,(x,), L,(x,)) Is from R
normalize
Observed class histogram (O(T)) for transformation T
Measure - KLD(O(T), EH)



MI of Regions

® Adding spatial information to MI concept
m \/ector of neighbors of a pixel
m Curse of dimensionality:
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