Medical Image Registration using Information theory measures
 Ivan Vnučko
 KAI
 FMFI UK Bratislava
 2005

Outline

- Introduction
- Classification
- Registration process

Transformation model
Similarity metric
Optimization method

- Challenges
- Recent methods

Image registration

- Process of estimating an optimal transformation between two images or image and a model
- Optimal transformation - optimum of some measure

Medical applications

- Fusion of data from different modalities
- Anatomical (CT, MRI,...)
- Functional (fMRI, SPECT, PET, ...)
- Studying time changes

Monitoring progress of disease, comparison of preand post-intervention

- Image guided therapy

Planning surgery or radiotherapy on images registered to patient

- Atlas

Classification of structures based on registration to atlas

Classification

- 9 criteria classification Van den Elsen, Pol, Viergever
- Registration basis

Extrinsic

- Invasive - fiducials, stereotactic frame
- Non-invasive - adapters, markers

Intrinsic

- Landmark - anatomical, geometrical
- Segmentation - rigid, deformable
- Voxel-property based - properties of the image content

Non-image based - calibrated sensors

Classification II.

- Other criteria:
- Dimension - 2D/2D, 2D/3D, time
- Nature of transformation - rigid, affine, projective, curved
Domain of transformation - global, local
- Interaction - interactive, semi-automatic, automatic
- Optimization procedure - parameters computed, searched for
- Subject - intra-subject, inter-subject, atlas

Object
Type of registration - multimodality, monomodality, ...

Registration procedure

- Processing flow:

Transformation model

- Transformation model
- Rigid - 6 parameters (3D), simple
- Affine - 12 parameters, crude approximation to non-rigid
- Projective, perspective

Non-rigid, elastic, curved

- Diffeomorphisms (e.g. fluid models), B-splines, thin-plate splines, FFD
- Use of smoothness constraints, regularization term
- Local - piecewise registration, global
- Rectification - correction of distortions with known models prior to registration
Can simplify expected transformation model
- CT gantry tilt - affine without translation

Izotropic scaling

- Projections to 2D - mostly curved, for example "pincussion" or barrel distortion
MR - non-uniform gradient field due to scanner imperfections or inductions

Optimization

- Most voxel-property based methods use searching for parameters - iterative process
- With derivatives or without derivatives
- Stochastic

Simulated annealing
Time-consuming

- Deterministic
- Powell, Levenberg-Marquardt, ...

Faster, but problems with many local extrema

- Multi-scale techniques
- Capture range - searching for optima, which is global only in some range, could be local only

Voxel similarity measures

- Computed from all voxels or from a subset
- Regular grid
- Random voxels
- Segmented ROI
- Preprocessing - blur to avoid alias artifacts
- Computed from intensities or properties

Gradients,...

- Computed only from overlapping voxels

Actual transformation dependent

- Grouping of intensity values
bins, classes

Voxel similarity measures II.

- Squares of intensity differences
- Basic measure
- Assumption: corresponding voxels have same intesities, for Gaussian noise it's optimum
- Pre-segmentation - compute only on regions with small changes
- Correlation coefficient

Assumption: intensities are linearly related

- Ratio-image uniformity

Ratio-image - dividing all voxels in A by voxels in B
Minimizing normalized standard deviation

- Partitioned intensity uniformity (PIU)
- Partitioned intensities in A, for each partition histogram of correspondent voxel intensities in B
Normalized standard deviation minimized

Joint histogram

- 2D histogram of co-occurrences of image values - joint histogram or feature space
- aligned images have focused histogram, by misalign dispersion grows
\Rightarrow minimizing dispersion (some it's measure)

\Rightarrow the best alignment

Joint probability distribution (pdf)

- Normalized joint histogram - joint pdf estimation
- Joint pdf changes with transformation
- Calculate measures from joint pdf to optimize transformation
- Used
- Discrete estimation of joint pdf
- normalized histogram
- Continuous pdf estimation
- Gaussian, Parzen windows

Entropy

- Measure of information, uncertainty
- Shannon $-H(X)=-\sum p_{i} \log p_{i}$
- Continuous RV - differential entropy
$H(X)=-\int p(x) \log (p(x)) d x$
- More than 20 other entropy definitions functional
- Conditional entropy

$$
H(X)=-\int p(x) \log (p(x \mid y)) d x
$$

- Joint entropy
$H(X)=-\int p(x) \log (p(x, y)) d x$

Kullback - Leiber distance (KLD)

$$
D(p, q)=\int p(x, y) \log (p(x, y) / q(x, y)) d x d y
$$

- "distance" between pdf's, asymmetric
- KLD as an alignment measure:
minimize distance of data to some expected distribution
- maximize distance of data to some unwanted distribution

Joint and conditional entropy

- maximizing the KLD of joint pdf from constant distribution is minimizing joint entropy:

$$
D(p, c)=\int p(x, y) \log (p(x, y) / c) d x d y \approx-H(X, Y)
$$

- maximizing the KLD of joint pdf from one of the marginal distributions is maximizing conditional entropy:

$$
D(p, c m)=\int p(x, y) \log (p(x, y) / c m(x)) d x d y \approx H(X \mid Y)
$$

- maximizing the KLD of joint pdff from joint pdf if marginal were independent $(m(x) n(y))$ is maximizing mutual information:

$$
D(p, m n)=\int p(x, y) \log (p(x, y) / m(x) n(y)) d x d y=I(X, Y)
$$

Mutual information

- Maximizing the distance of joint distribution from joint distribution of independent variables:
$D(p, m n)=\int p(x, y) \log (p(x, y) / m(x) n(y)) d x d y=I(X, Y)$
- $I(X, Y)=H(Y)-H(Y \mid X)=H(X)-H(X \mid Y)$

MI is the loss of uncertainty in $Y($ or X) when X (or Y) is known

- $I(X, Y)=H(X)+H(Y)-H(X, Y)$

Maximizing the MI is equivalent to maximizing marginal entropies and minimizing the joint entropy (last term)

- Advantage in using mutual info over joint entropy - individual input's entropies are included

Properties of MI

- I(A,B) $=I(B, A)$
- Symmetry
- I(A,A) $=H(A)$

MI of a message to itself is it's entropy

- I(A,B) $<=H(A), I(A, B)<=H(B)$
- Info each message contains about the other cannot be greater than the info they themselves contain
- I(A,B) >=0

Cannot increase uncertainty in A by knowing B

- If A, B are independent then $I(A, B)=0$

Improvements to MI concept

- Normalized MI
$\square \operatorname{NMI}(A, B)=(H(A)+H(B)) / H(A, B)$
- Tries to overcome the overlap problem of MI
- Entropy correlation coefficient

ECC(A,B) = $2-2 / \mathrm{NMI}(A, B)$

- Connected region labeling

Regions in $\mathrm{M}=>$ label image L

- automatic/manual segmentation
- anatomical features

I $(M, L, N)=H(M)+H(L)+H(N)-H(M, L, N)$
M, L are registered - information between N and M, L

- I(M,L,N) $=H(M, L)+H(N)-H(M, L, N)$

Challenges

- From Pluim, Maintz, Viergever in IEEE Transactions on medical imaging 2003:
- Curved registration

Physically realistic deformations, not only regularization

- Registration of 3 or more images
- How to find optimum for more transformations, and if it exists
- Inter-subject registration
- Some combinations of modalities

Ultrasound

Challenges II

- Intraoperative registration
- Patient position verification in radiotherapy, correction for tissue deformation
Fast matching to poor quality image with deformations
- Including spatial information to entropy based measures
Shannon's entropy is based on assumption, that all voxels are uncorrelated
- 2D/3D registration, specially slice to volume Need for Digitally Reconstructed Radiographs (DDR)

Recent methods

- Cumulative residual entropy - Vang, Vemuri, Rao, Chen in proc. of ICCV' 03
- Alternative entropy definition
- Joint class histograms - Chan, Chung, Yu et al. in proc. of CVPR'03
- Reduction of intensity values and their mapping to classes
- Information metric - Zhang, Rangarajan in proceedings of CVPR'04
- "Near" MI measure, but a pseudometric
- Extendable to multiple images case
- MI of Regions - Russakoff et al. in proc. of ECCV'04

Spatial information

Cumulative residual entropy (CRE)

- alternative entropy definition
- uses cumulative distribution function (cdf) instead of pdf:

$$
H(X)=-\int P(|X|>\lambda) \log (P(|X|>\lambda)) d \lambda
$$

- can be computed from samples
- conditional CRE:

$$
H(X \mid Y)=-\int P(|X|>X \mid Y) \log (P(|X|>X \mid Y)) d X
$$

- cross - CRE (CCRE):

$$
C(X, Y)=H(X)-E(H(X \mid Y))
$$

Information metric

- $\rho(X, Y)=H(X \mid Y)+H(Y \mid X)$
- Pseudometric

$$
\begin{gathered}
(\rho(X, Y)=0 \text { if } X=f(Y)) \\
\rho(X, Y)=H(X, Y)-M J(X, Y)
\end{gathered}
$$

- Can be easily extended to multiple image case: $\rho\left(X_{1}, \ldots, X_{n}\right)=\sum^{n} H\left(X_{i \mid} \mid X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right)$
Because of computational complexity of $p(X, Y, Z, \ldots)$ upper bound for ρ (a metric too) used

Joint class histogram

- Class labels $-\Psi_{1}, \Psi_{2}$
- Segmentation $=>$ voxel classifications

$$
\Rightarrow L_{1}: X_{1} \rightarrow \psi_{1}, L_{2}: X_{2} \rightarrow \psi_{2}
$$

- Mapping relation $-R$: $\psi_{1} \times \psi_{2}$
- Expected joint class histogram (EH)
- for all x_{2} from X_{2} increase bin $\left(L_{1}\left(x_{1}\right), L_{2}\left(x_{2}\right)\right)$
$\square x_{1}$: randomly from X_{1}, so that bin $\left(L_{1}\left(x_{1}\right)\right.$, $\left.L_{2}\left(x_{2}\right)\right)$ is from R
normalize
- Observed class histogram (O(T)) for transformation T
- Measure - KLD(O(T), EH)

MI of Regions

- Adding spatial information to MI concept - Vector of neighbors of a pixel
- Curse of dimensionality

