Image filtering using
MMX technology

Report about motivation article

vasko.anton@gmail.com

Content

n Brief overview of MMX technology
n Sample assignment

n MMX optimization of filtering

n Conclusion

MMX — data types

4 new data types (64 bits wide)

pac
pac
pac

KEC
KEC

byte
word

KEC

doubleword

gquadword

[T T T T T T T]

[T [T 1]
I

MMX - registers

n 8 new registers MMO — MM7, 64 bits wide
n physically mirrored in FP stack

Flaaling-point registers

MG
MrAS
|
M3
WP 2
hrt 1
M0

MBX registers

MMX - instructions

5/ new instructions:
arithmetic (padd, psub, pmul ...)
comparison (pcmpeq, pcmpgt)
conversion (pack,punpck)

shift (psll, psrl, psra)
data transfer (movqg, movd)

1.
2
3
4. logical (pand, pandn, por, pxor)
5
6
7. state management (emms)

Reasons for MMX optimization
analysis

n Image filtering is computational expensive
(e.g. for picture of size 256x256 and

separable 3x3 filter 256 * 256 * (3+3) =
393 216 multiplication is needed)

n Often used in multimedia
n MMX = MultiMedia eXtension

n |Is image filtering suitable candidate for
MMX optimization?

Sample assighment

n 2D image with 8-bit color values
n 3x3 separable filter kernel

n Filter coefficient are signed 8 bit with sum
of 64 — normalization is shifting (instead of
divide)

Basic Strategy

MMX multiplying is on packed words (16-bits)
=>

Read 8-bit pixels

Unpack them to 16-bits

Multiply by the filter coefficients (already
preformatted into 16-bit data)

Sum products

Produce normalized result using arithmetic
right shift

Convert back from word to byte format

Filter operations

n Filter operations: > [ho|h1|h2| o |v1

Image

n 2 steps — horizontal and vertical filtering

n Let start with the vertical one, because it Is
easier and fits very nicely the parallelism of the
MMX instructions

Vertical filter strategy

n [yO’, y1°,

y2', y3'] = [x0, x1,
Y0, y1

z0, z1,

, Y2, y3]

22,23

X2, x3] *

v0 +

*v1+

*

el

I

' Image plane

Unscheduled code

» Wertical pass of a 3x3 separable image filter
Lazume:
esi-points te lineof s
edi points Lo -output line (the line before X's
edx contains the line-to-line "stride"
merwl iz the memory location containing [w0,w0,w0,w0] (16 bit walues)
wewwvl is the memory location containing [v1,vw1,v1,w1l] (16 bhit walues)
mmb contains zero
mm? ccontains [vE,vwE,vwE,v2] (16 bit walues)
Thig :zodedoeg the four - low=erder-pixels in-a-group -of -eight:
To do the high-order pixels use the sawe code with punpckhbw
instead of punpcklhuw
hi{lnyhis| mml, [e=31] : Load 's
punpcklbw o, mend : Unpack with zeros to get words
proullw ml, merreD ; Multiply by w0
movg mml, [esi + edx] ; Load Y's
punpcklhw mml, w6 : Unpack with zeros to get words
prullw mnl, mewwvl Multiply hy wl
movg mz, [e2i +-2% edx] ; Load Z2's
punpcklbw mmZ , b : Unpack with zeros to get words
proul lw 1 A i1 ; Multiply with wil
paddsw ol , meol ; hocumulate
paddsw mrll, moos ; Finish accumulation
psraw mmrall, 6 : Normalize
packusvb a0, o0 : Pack into four low-order hytes
mowvd [edi], 0 : Write result into memory

Improvements

n Resources analyze — 1 register for
unpacking, 3 registers for 3 image lines =>

n Unwind the loop twice (in the x direction) —
6+1 registers, and

n Interleave two copies of the code
(Software-pipelining technique)

n Schedule - it is possible to obtain perfect
pairing (without stalls) of this code (not
shown)

Vertical filter summary

n Operating on 4 (not 8) pixels in parallel
n Operating on the original pixels — writing
result 2 lines above the original

n This shifts the image but can be
compensated elsewhere, e.g. in horizontal
filter

n Efficient utilization of processor's L1 cache

Horizontal filter strategy

n [X0’, x1°, x2°, x3’, x4’, X5', X6, X7'] =
N0 * [xp, X0, x1, X2, x3, x4, x5, x6] +
N1 * [x0, x1, X2, X3, x4, x5, X6, X7] +
N2 * [x1, X2, x3, x4, x5, X6, X7, X8|

8-byte
adligned
address

ho|h1|h2

etc.

Synthesis of the sets

Not everything in memory can be aligned
—p

X0, X1, X2, X3, x4, X5, X6, X/

Xp, X0, x1, x2, X3, x4, x5, xX0]
(Q0>>56) | (Q1<<8)

[X1, X2, X3, x4, x5, X6, X/, x8] =
(Q2<<56) | (Q1>>8)

Unscheduled code (1)

Horizontal pass of a 3x3 separable image filter

Azzwume
e21 points to bheginning of input line
edl points to bheginnig of output line
ecx iz an offset within the line
memvld iz the memory location containing [wO0,v0,w0,wv0] (16 bhit walues)
memvl iz the memory location containing [wl,v1l,vw1,v1] (16 bhit walues)
wemnve 13 the memory location containing [v2,ve,.v2,wv2] (16 bit walues)
mwme Contains =ero

mmld, [esi + 8% ecx —-8] : Load o0
mml, [ez3i + 8% ecx] : Load 01

, mml r Make a copy of miml
o3 |, ol : Make another copy of mml
mmld, [e=i1i + 8% ecx +5] Load Q2
i, 56 - 61 e]
oz, S P R
o, oo » nm0 now has [x6, .., xp]
md, 56 r 2L« EE
m3, & r Q018
and, rood mmd now has [x8, .., x1]
nz , roeod) : make: auiropy O the stk
and , ool r 1. =zZet: rmold, mol, miod
mins , roood ;2. Set: mmg, mmd, S

Unscheduled code (2)

Low 4 pixels
punpcklhu Tl , : Dnpack with =zZeros Lo get words
prouallw rernO , s Multciply by O
punpcklhuw rml : Dnpack with =zZeros to get words
proaller ranl s Multiply by vl
punpcklhu T » Dnpack with =zeros to get words
proal ler T s Multiply with w1l
paddsw T, » Aoocumulate
paddsw Tl , : Finish accumulation
psraw ranld , & » Normalize

High 4 pixels
punpckhlbw s , Unpack with zeros to get words
pruallwr s , : Multiply by w0
punpckhlw {11{)C N + IDnpack with =zeros Lo get words
pruallwr {11 () r Mulciply by vl
punpckhbw rns , r npack with =zZeros Lo get words
proullwr s, r Multciply with wil
paddsw s ; Aococumilate
paddsw T : Finish asoocumulation

s B : Normalize

rnld . rond : Pack to hbytes
[edi +8% ecx], 0 r Writce result into memory

Horizontal filter summary

n 2 sets of input — once to filter low-order 4
pixels, once for the high-order 4 pixels

n It is possible to obtain perfect pairing
(without stalls) of the code (not shown)

Conclusion

Image filtering is rewarding topic for
MMX optimization

My current work — extension of these
ideas:

From 2D (image filtering) to 3D (volume
filtering)

Bigger kernel (5x5x5, 7X7x7)
Floating-point calculations

Bibliography

1. Intel Corporation: The Complete Guide to
MMX Technology, McGraw-Hill, Inc.

Thanks for your
attention !

vasko.anton@gmail.com

