Parallel Programming

Marek Zimanyi

Parallel Programming Models 1

Message Passing vs. Threading

* Individual processes * One process (environment),
exchange messages multiple threads
¥ explicit com’ < implicit com’

* Works on clusters and on * (Usually) only on Symmetric
parallel computers MultiProcessor systems
< Distributed memory < (virtually) shared

and shared memory memory systems

* Manual parallelization * (Semi-) automatic parallelization too

Material based on EG 2001 tutorial
http://www.aris.uni-tuebingen.de/~bartz/tutorial s/eg2001tutorial/

http://www.gris.uni-tuebingen.de/~bartz/tutorials/eg2001tutorial/

Parallel Programming Models 2

Message Passing vs. Threading

Interconnection network * One common interconnect
(switches, ethernet, etc.) (bus,crossbar)

Distributed memory (no * UMA /NUMA memory
common accessible memory)

MPI 2.x / PVM 3.x * OpenMP / pthreads

Limited concurrency control * Flexible concurrency control

Outline

* Message Passing
* Message Passing Interface (MPI)

* (Parallel Virtual Machine) (PVM)

* Threading in Shared Memory
* OpenMP
* Pthreads

Message Passing (1)

Overview
* Individual processes

* Explicit communication by exchange of messages

* On shared-memory and on distributed memory systems

Message Passing (2)

Message-Passing vs. Parallel Virtual Machine

Interface (MPI) (PVM)
* Limited session control * Rich session control
* Supports portability only * Supports portability and
* Rich com’ functionality interoperability

e Performance oriented * Flexibility and fault-tolerance

Message Passing (4)

When to use MPI, when to use PVM?
(Answers in Geist et al. 96)

* MPI for parallel computers

* PVM for clusters

However, PVM seems to loose significance

Outline

* Message Passing
* Message Passing Interface (MPI)

e (Parallel Virtual Machine) (PVM)

* Shared Memory
* OpenMP

* Threading using Pthreads

MPI

Message Passing Interface
e Current version 2 (MPI 2.x)
e Supports portability, not interoperability

* \Works on clusters, but focus is on “large
multi-processors”

« Task distribution done by vendor
Implementation

MPI

Message Passing Interface, cont’d

 Individual processes synchronize at one
point of execution, or exchange
messages

e Rich variety of communication
mechanisms

e (Almost) no resource/session
management in standard, but vendor
specific tools are usually available

MPI - Management

Management:

 Individual process subscribe to MPI:
int MPlI init(int* argc, char **argv);

« Parallel code/tasks, synchronization and
exchange of messages

e Unsubscribing from MPI:
int MPI _finalize(void);

error return code

MPI — Grouping amd
communication

« Groups provide

— Support for parallel libraries (hides internal
communication)

— Scope for communication (com’) and
synchronization (sync’)

« Elements: communicator, group, context
e Intracommunication - within a group

— Point-To-Point com’ (pairwise)

— Collective com’ (root to members)

PVM - General

Parallel Virtual Machine
e Current version 3 (PVM 3.x)

 Good for communication (com’) In
cluster

 Virtual Machine interoperability

PVM - General

Meets specific needs of cluster computing:
— Dynamic resource management
— Fault-tolerant applications

One master: distributes data and subtasks
Several slaves: perform subtasks on data
Participating systems listed in hostfile

PVM daemons (virtual machines) are
running on participating systems

Parallel Volume Rendering
(some notes ...)

 Regular-Grid Techniques
— Shared-Memory Ray Casting
— Distributed-Memory Ray Casting
— Shared-Memory Shear-Warp

 Problem: Load balancing

Load Balancing

e Static versus Dynamic
 Data locality and cache coherence
o Scalability

Solution

o K-dtrees
(Ma, Painter, Hansen, Krogh 93)

Final Image:

Solution

« BSPtrees(Silva 94, 96, 99)

— Always subdivide along the largest
(14 aXiS”
e Optimal Processor Allocation for BSP-tree
compositing

actual co siting tree

—

BSP-tree compiler

virtual compiggsiting tree

