
Parallel Programming

Marek Zimanyi

Parallel Programming Models 1

Material based on EG 2001 tutorial
http://www.gris.uni-tuebingen.de/~bartz/tutorials/eg2001tutorial/

http://www.gris.uni-tuebingen.de/~bartz/tutorials/eg2001tutorial/

Parallel Programming Models 2

Outline

Message Passing (1)

Message Passing (2)

Message Passing (4)

Outline

MPI

Message Passing Interface
• Current version 2 (MPI 2.x)
• Supports portability, not interoperability
• Works on clusters, but focus is on “large

multi-processors”
• Task distribution done by vendor

implementation

MPI
Message Passing Interface, cont’d
• Individual processes synchronize at one

point of execution, or exchange
messages

• Rich variety of communication
mechanisms

• (Almost) no resource/session
management in standard, but vendor
specific tools are usually available

MPI - Management
Management:
• Individual process subscribe to MPI:
int MPI_init(int* argc, char **argv);

• Parallel code/tasks, synchronization and
exchange of messages

• Unsubscribing from MPI:
int MPI_finalize(void);

error return code

MPI – Grouping amd
communication

• Groups provide
– Support for parallel libraries (hides internal

communication)
– Scope for communication (com’) and

synchronization (sync’)
• Elements: communicator, group, context
• Intracommunication - within a group

– Point-To-Point com’ (pairwise)
– Collective com’ (root to members)

PVM - General

Parallel Virtual Machine
• Current version 3 (PVM 3.x)
• Good for communication (com’) in

cluster
• Virtual Machine interoperability

PVM - General
• Meets specific needs of cluster computing:

– Dynamic resource management
– Fault-tolerant applications

• One master: distributes data and subtasks
• Several slaves: perform subtasks on data
• Participating systems listed in hostfile
• PVM daemons (virtual machines) are

running on participating systems

Parallel Volume Rendering
(some notes …)

• Regular-Grid Techniques
– Shared-Memory Ray Casting
– Distributed-Memory Ray Casting
– Shared-Memory Shear-Warp

• Problem: Load balancing

Load Balancing

• Static versus Dynamic
• Data locality and cache coherence
• Scalability

Solution
• K-d trees

(Ma, Painter, Hansen, Krogh 93)

Solution
• BSP trees (Silva 94, 96, 99)

– Always subdivide along the largest
“axis”

• Optimal Processor Allocation for BSP-tree
compositing

