VGG Seminar, 7.12.2005

Segmentation of Tubular Structures in Presence of Other Objects

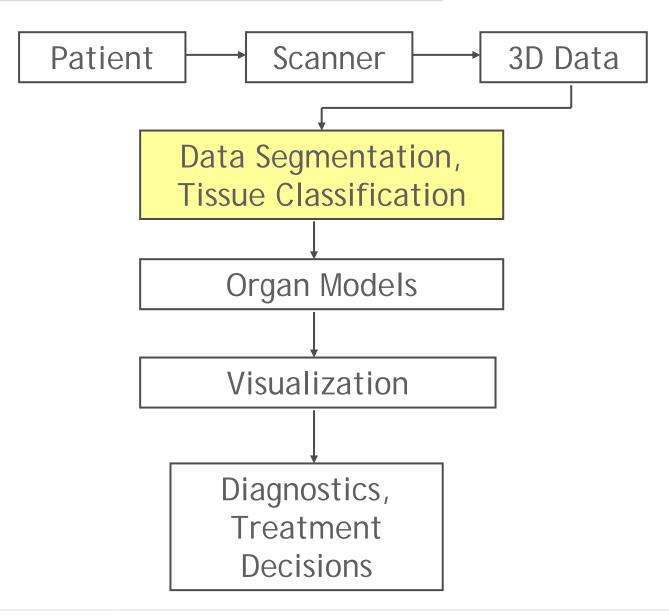
(Research Report)

Matúš Straka

AUSTRIAN ACADEMY OF SCIENCES ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN ٦

Motivation: Peripheral CT-A Data Processing

Challenge: Vessel Segmentation Approach: Modified Tubular Segmentation Results & Discussion



Motivation

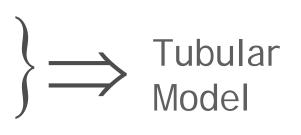
- Angiography: vessel visualization
- Diagnostics & treatment purposes
- Imaging: helical CT scanner
- Contrast agent enhancement
- Fast, minimally invasive, cheap
- Data:
 - acquisition in 40 secs
 - 3D modality
 - ~1400 axial slices (512x512 each)
 - Element size 0.5x0.5x1.0mm

Medical Data Processing

Motivation: Peripheral CT-A Data Processing

Challenge: Vessel Segmentation

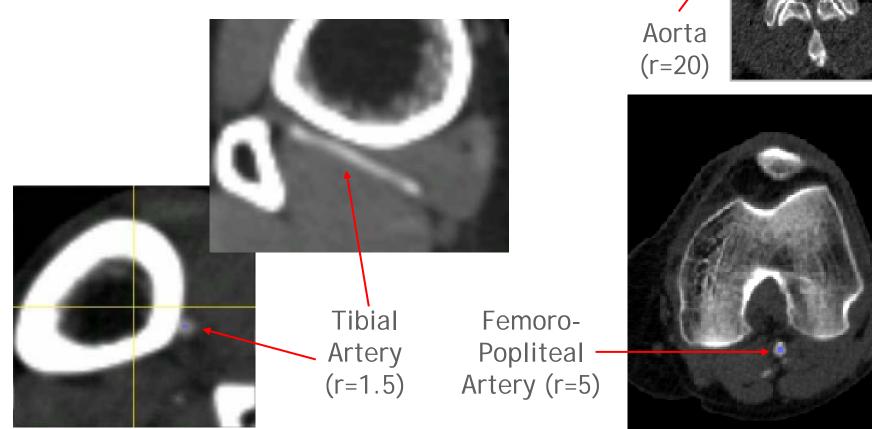
Approach: Modified Tubular Segmentation Results & Discussion


CT-A Data Properties

- Vessels and bone denser as soft tissue
- Cortical bone denser as vessels
- Trabecular bone and vessels have similar densities
- Vessel density varies significantly
- Pathologies (calcifications, occlusions, ...)

Goal of CT-A Data Processing

- Visualization:
 - Of thick or isolated vessels solved
 - Of thin vessels (near bones) this talk
- Visualization with current techniques = get a model
- Model of a vessel:
 - Presence
 - Centerline & Orientation
 - Diameter/Radius


- Cooperation: Model \leftrightarrow Segmentation
- Naïve segmentation approach: match a tubular template

Segmentation of Tubes in 3D data

- Well-studied problem in literature
- Often easy, then
 - Thresholding, Region growing
 - Snakes, Active contours
 - Skeletonization
- Modeling based on tubular shape, <u>tubularity</u> defined as
 - High density change in two directions
 - Low density change in third third direction
 - Eigenvalue analysis

Vessels in Peripheral CT-A Data

- Bone and vessels lie very close
- Data blurred (partial volume effect)
- Vessel size vary (r = 1-30 voxels)

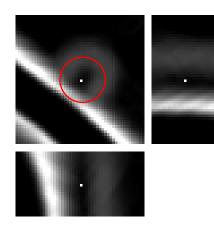
Problems in PeriphCTA Processing

- Thresholding/region growing: density uncertainity, noise
- Snakes: too many false edges, noise
- Watersheds: region merging/classification problematic
- Hessian matrix+eigenvalues: fails if both darker and brigher objects are close, response depends on contrast, no radius info
- Anatomic atlases: inter-patient anatomic variability too high
- DoG filter: only for larger objects, orientation info requires PCA computation
- Distance field based skeletonization: requires good pre_segmentation
- Too many structures with quasi-tubular shape

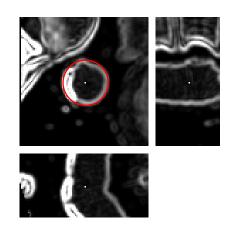
Motivation: Peripheral CT-A Data Processing Challenge: Vessel Segmentation

Approach: Modified Tubular Segmentation Results & Discussion

Eigenvalue analysis


- Derives orientation of object
- Eigen decomposition:

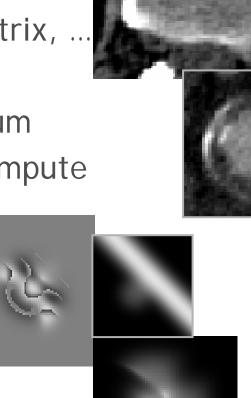
$$\mathbf{A}x = \lambda x$$


- Returns 3 independent vectors (orientation) and 3 scalars (variation in given direction)
- Used in:
 - PCA (Hotelling Transform)
 - Hessian-Matrix-based analysis
 - Structure Tensor, ...
- Matrix A: "2nd order element matrix" (2nd partial derivations, covariations, ...)
- No precise radius information

Radius Estimation

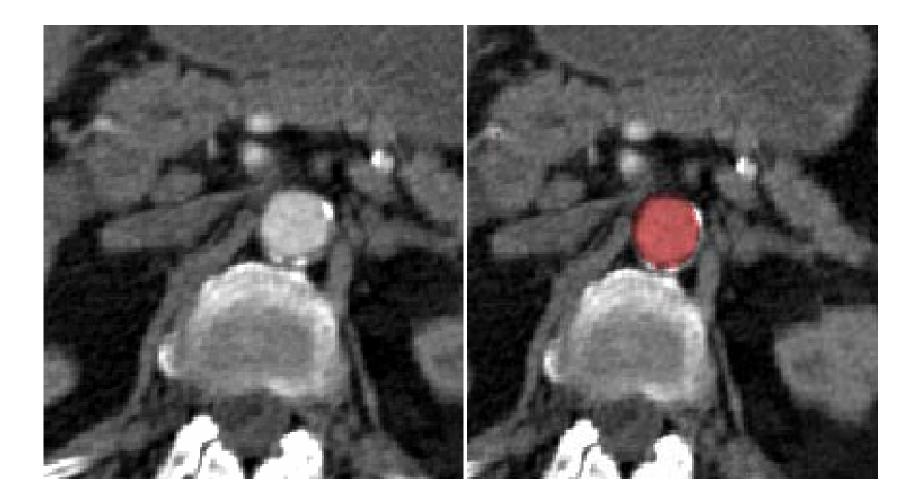
- Maximum of GradMag averaged on cylindrical surface (3D)
- In along-axis-resampled data
- Requires precise centre and orientation
- Works for blurred or non-ideal contours

GradMag image, r=2, trilinear int.

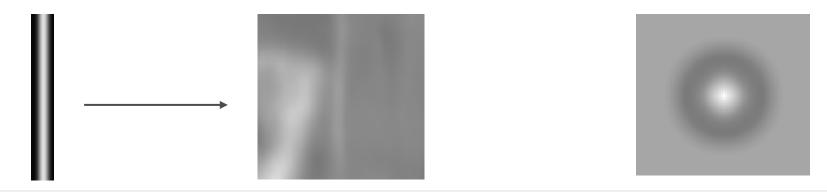


GradMag image, r=22

Segmentation of Large Vessels


- Large: a lot of samples (>50 per slice)
- Tubular shape nicely recognizable
- Quite easy:
 - Orientation: DoG + PCA, Hessian Matrix, ...
 - Center: PCA, CoG, maximum
 - Radius estimation: GradMag maximum
 - Tracking: "Shift along axis and recompute parameters"
- Center estimation fails for:
 - thin vessels, close to bone Hessian-Matrix-Eigenvalues Structure-Tensor-Eigenvalues

14/27


Segmentation of Large Vessels

r

Segmentation of Small Vessels

- Precise center computation needed
 - For radius computation
 - For precise modeling
 - For "shift along axis and recompute" algorithm
- Orientation info and approximate position available
 ⇒ Template Matching feasible
- Algorithm: evaluate best position for vertical cylinder template (compute difference between template and data densities in given position)

Template Matching

- Parameters to estimate:
 - Vessel density
 - Surrounding tissue density (bones, soft tissue)
 - Vessel template radius
- Standard template matching two rectangular volumes axially not symetric
- Modified template matching:
 - Vessel density similar "inside the object"
 - Enough difference in density "outside the object"
 - Radius

Template Match. - Parameter Estimation

- Template vessel density D_V use data from previous match
- Radius: use primary user-defined estimation
- Density for surrounding tissue not needed:
 - Check if "outside" is the density different enough
 - D_d density diff (fore-/background)


$$r_{t} = 200\% r$$

$$f(\bar{x}_{0}) = \frac{1}{xyz} \sum_{x,y,z} \left(\frac{D_{d} - D_{V} - D(x, y, z)}{D_{d}} \right)^{2} \qquad r(x, y, z) < r_{t}$$

$$r_{t2} > r(x, y, z) > r_{t}$$

t

 $r_{t} = 50\% r$

 $r_t = 100\% r$

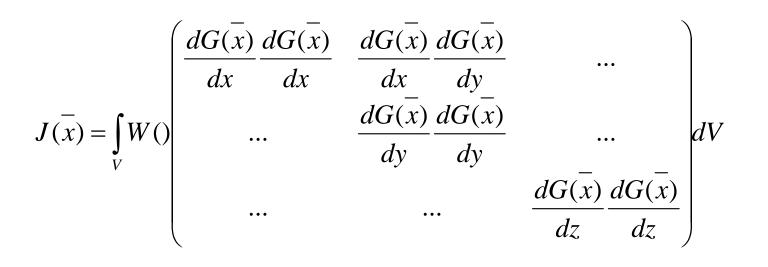
٦

Old system, would require ~25min of manual segmentation

Proposed solution, would require <5min of manual interacton

Conclusions

- Global filters not usable ⇒ local user interaction always needed
- Always compute result from multiple samples
- After precise segmentation, higher level models can be computed or applied



Limitations

- Requires user interaction (start point)
- Requires approximate estimation of the radius for:
 - σ in filters
 - size of search area in template matching
- No "native" stopping criteria
 - Wrong segmentation if underlying data change too much (radius)
 - Always computes results, even if nonsense
- Speed / response time (seconds)

Approach

- Eigenvector analysis gives good results for orientation
- Structure Tensor:

Thank you for your attention

matus.straka@oeaw.ac.at

http://www.viskom.oeaw.ac.at/~straka/AngioVis

"

٦