SIMD Optimization In
Volume Rendering And
Gaussian Filtering

(Rigorous Thesis)

Anton VVasko

Content

= VVolume visualization

= Brief Overwiev of Volume Rendering
Algorithms

= About SIMD

m SIMD Optimization in Ray Casting

m SIMD Optimization in Gaussian Filtering
m Conclusion

Quick Intro

m Vvolume = 3D grid (discrete data)

@ common in medical imaging (CT, MR,
PET, SPECT ...)

m Volumes can be large
512 x 512 x 512 x 32bits = 512 MB

Volume visualization

volume visualization: VOLUME DATA

(scanned or synthetic)
2D PROCESSING
3D PROCESSING

RENDERING
Improving speed of rendering:

adjusting volume data
optimizing rendering algorithms

Adjusting volume data

E removing spurious particles

m reducing the number of non-air octree
cubes

m achieved by smoothing — e.g. Gaussian
Filtering

m VO

m VO
cu

HW Volume Rendering

ume = 3D texture
ume rendering = mapping 3D texture on

ne or GPGPU raycasting (shaders)

m advantages: pretty fast (all is done in HW)
m disadvantages: need for new (main-stream

or

better) graphics cards with big RAMSs

N
1.
2.
3.
4.
N
]
N

SW Volume Rendering

more rendering techniques, e.g

Brute Force (ray casting)

Shear-Warp Factorization
Multiresolution Min-Max Octrees

and ... more ...

disadvantages: not so fast, of course
advantages: runs practically everywhere
can be optimized for SIMD

SIMD (1)

m Single Instruction Multiple Data

X1xY1 X4+Y4 X3xY3 X2+Y2 X1+Y1

m Extended CPU instruction set

SIMD (2)

SIMD support on current CPUSs:
Intel - MMX, SSE, SSE2, SSE3
AMD — MMX, SDNow!, SSE

AMD64 — MMX, SDNow!, SSE, SSE2,
SSES

Decision :
optimizing for 3SDNow! and SSE

Approaches

B common aspect in volume rendering —
processing a lot of data

m 2 basic approaches:

precalculate everything possible
VS
calculate everything on the fly

Present Time

s CPU Is much faster than RAM

= calculating on the fly

= simple algorithms (ray casting)
= need for rewriting old algorithms

Decision:
SIMD Optimization of Ray Casting

SIMD In Ray Casting

Important parts:

s Bricking Data
s Entry Point Buffer
s Ray Casting

Bricking Data

Non-linear storing in RAM
Reasons:

CPU cannot read from RAM but from
cache. Cache miss = stall for =40 clocks

Locality concept

Increased algorithm’s data throughput
with SIMD

Bricking Results

Table 5.2: Impact of Bricking on Calculation Times [ms).

RC-Init | RC-Accum Total
1426.91 | 1452.12

743.73 | 762.14

145.25 | 165.606

92.55

82.41

92.11

Entry Point Buffer

Similar to Depth buffer

Parallel projection — rasterizing just one
nlock and copying

Doing memset and memcpy Is ‘delicacy’
for SIMD

EPB Results

Table 5.4: Optimization of stage EPE.

Duration [ms] Speedup

3DNow

Ray Casting

2 parts:

Initializing rays according Entry Point
Buffer — SIMD optimizable

Processing rays (accumulation):
not ‘SIMD optimization friendly’

Ray Casting Results

Table 5.6: Optimization of the Ray Initialization stage.

pC Duration [ms] Speedup
None | 3DNow
9.5 5.
22.0

10.03

Ray Casting Results

Table 5.7: SIMD optimization of the Accumulation stage.

pC Duration [ms] Speedup
None

SIMD and Gaussian Filtering

m separable — 3 passes

m symmetric — saving multiplications
= floating-point

= filtering In-place

= Without temporary buffer — how?

Extended volume 1

m new technique - extended volume

Figure 4.1: Position of the original volume in the extended volume during filtering.
Left - at the beginning before filtering. Middle - after FilterX. Right - after FilterY.
After FilterZ the filtered volume is positioned again in the top left of the extended volume .

Extended volume 2

® reducing passes

Figure 4.2: Position of the original volume in the extended volume during filtering.
Left - at the beginning before filtering. Right - after FilterXY.
After FilterZ the filtered volume is positioned again in the top left of the extended volume .

m parallelization of computation for SIMD

Limitations

= humber of SIMD registers — 8 (x86)

m extended volume — additional extended
slices

m Decision — 3 additional slices, 3 additional
lines for each slice =>

m Gauss3, Gaussh, Gauss’

Table 6.9: Results of gauss? on PC5.

Total Duration [s Speedup

None 3D Now! SoE 3Now! | SSE

volumel | 0.1035 0.0051 | 0.0047 | 20.24 | 21.88
volume?2 | 0.8517 0.0442 | 0.0498 | 19. ‘?’G 17.11
volume3d | 6.9225 0.4362 | 0.5036 13.75
volumed | 379.7929 | 47.1538 | 32.2716 .0F 11.77

Conclusion

= Real time volume rendering — GPU

= Quality volume rendering — CPU (12%
Speedup with SIMD)

m Gaussian Filtering — positively SIMD

s SIMD Optimization principles can be often
successfully used even when not
iImmediately followed by assembler
Implementation! (bricking, ...)

Future work

Optimization of filtering:

Gauss9, Gaussll1, Gaussl3, Gausslb
(16 SIMD registers in x86-64)

General separable filtering (not only
Gaussian, no kernel size restriction)

Nonseparable filtering

Thanks for your
attention !

vasko.anton@gmail.com

