Transfer Functions

Miloš Šrámek

Light Attenuation

 Interaction with matter results in absorption

Beer-Lambert law:

$$\frac{dI(t)}{dt} = \rho(t)I(t) - k(t)\rho(t),$$

ρ(t): optical density, a measure of attenuation

k(t): chromacity, color

Volume Rendering Integral

Integral form of the Beer's law

$$I = \int_{t_0}^{t_n} k(t) \rho(t) e^{-\int_{t_0}^t \rho(u) \, du} \, dt + I_b e^{-\int_{t_0}^{t_n} \rho(t) \, dt}$$

Per Segment Evaluation of the

• FTB
$$\begin{aligned} I_m &= I_{m-1} + (1 - \beta_{m-1})C_m \\ \beta_m &= \beta_{m-1} + (1 - \beta_{m-1})\alpha_m \end{aligned}$$

• BTF
$$\begin{aligned} I_m &= \alpha_m C_m + (1 - \alpha_m)I_{m-1} \\ over \text{ operator} \end{aligned}$$

where:

• segment opacity $\alpha_i = 1 - e^{-\int_{t_i}^{t_{i+1}} \rho(u) \, du}$

Accumulated opacity of m segments

Color of i-th segment

$$C_{i} = \int_{t_{i}}^{t_{i+1}} k(t)\rho(t)e^{-\int_{t_{i}}^{t}\rho(u) \, du} \, dt$$

Approximations

• Approximation of ρ and k by a constant: $\alpha_i = 1 - e^{-\rho_i \Delta t_i}$

$$C_i = k_i(1-\alpha_i),$$

$$\bullet$$
 ρ is a li
$$\alpha_i = 1 - e^{-\frac{\rho(t_i) + \rho(t_{i+1})}{2} \Delta t_i}.$$

Volume Rendering Equation

• We need opacities and chromacities.

We have only densities.

• What shall we do?

How to Get **Opacity/Chromacity from Density?** Unshaded projection Density transfer functions Edge amplification Shaded projection Special transfer functions

Unshaded Projection, Reprojection

• Use densities directly, i.e.:

 $\rho(p) = d(p)$ k(p) = 1

p is a position in the volumed(p) is density at p

Unshaded Projection

Density Transfer Functions Use functions to assign opacities and chromacities to each density, i.e.:

$$\rho(p) = f(d(p))$$

k(p) = g(d(p))

Where *p* is a position in the volume
d(p) is density at p *f* and *g* are transfer functions

Density Transfer Functions

Density Transfer Functions

 Transfer functions can be of any shape and complexity.

 But they assign the same value to a particular density regardless of its position and environment.

Edge Enhancement

 Transfer functions assign opacities and chromacities to gradient magnitudes:

$$\rho(p) = f(|\vec{g}(p)|)$$

$$k(p) = g(|\vec{g}(p)|)$$

 This results in edge enhancement, but only as good as the edge detector/gradient operator used.

Edge Enhancement

Shaded Projection

 Use gradients to compute colors, basically evaluating the shading equation at each volume sample point using the gradient there as surface normal.

$$\rho(p) = f\left(\frac{\vec{g}(p)}{|\vec{g}(p)|}\right)$$

 This results in view-dependent surface enhancement.

Shaded Projection

Special Transfer Functions

 These are functions that assign opacities/chromacities to some property derived at the sample points, e.g. curvature.

The problem is how to choose the optimal one among the many possible shapes.

How to approximate the VRI?

Ray-casting algorithms
 Image order traversal

Projection algorithms
 Object order traversal

Brute-force Ray-casting

For each pixel: For each sample along a ray: - Compute color - Weight color by opacity Accumulate color and opacity - Determine next sample Pixel gets accumulated color

Ray-casting Fundamentals

Front-to-back traversal:

$$I_m = I_{m-1} + (1 - \beta_{m-1})C_m \text{ under operator}$$

$$\beta_m = \beta_{m-1} + (1 - \beta_{m-1})\alpha_m$$

 $\alpha_i \ge 1$

Early termination ifFinal step:

$$c_f = c_i \alpha_i$$

Ray-casting Fundamentals

Definition of Transfer Functions

 Purpose: enhancement / suppression of desired / unwanted features of data
 Problem: too many degrees of freedom:

Definition of Transfer Functions (TF)

• Manual (trial & error) setting: Freely (hand) drawn curves: Hard to achieve meaningful result Piecewise linear: Based on tissue classification Computer assisted setting: Interactive evolution Inverse design Design galleries

Hand-drawn TF A typical result:

Piecewise Linear TF (with Tissue Classification)

Piecewise Linear Opacity TF

Shaded projection

Piecewise Linear Opacity TF Unshaded projection with edge enhancement

Inverse Design

Optimization according to a criterion (He 1996):

Image entropy Image variance Edge content Combination

Design Gallery[™] (Marks 1997)

Design Galleries (DG)

- Automatically generated selection of perceptually different images
 Generated off-line
 Requires similarity measure (distance between images)
 - No optimality measure required

DG Key Elements

- Input vector a set of parameters, that control output graphics
- Mapping from input to output vectors
- Output vector subjectively relevant qualities of output image
- Distance metrics between output vectors
- Dispersion method find a well-distributed set of output vectors
- Arrangement result presentation

TF generation by means of Design Galleries

- Input vector:
 - Opacity TF: 8 control points (16 parameters)
- - Color TF 6 subranges (red, yellow, green, cyan, blue, magenta)
- Mapping: A volume rendering technique
- Output vector: 8 manualy selected samples (24 values)
- Distance metrics: Euclidean

TF generation by means of **Design Galleries** Dispersion heuristics: Repeat (2 000 000 times) - Select random input vector I - Perturb the vector | to |' - If |' is better than | Replace | by |' End Arrangement Embedding in 2D space, with distances kept Thumbnail images

DG - Labor Division

• DG Designer

- Input and output vectors, metrics, dispersion and arrangement
- Must understand the visualization technique
- Computer
 - Does the work
- User
 - Uses the results
 - No deeper insight is necessary

Data Suitability for Volume Rendering

CT data: correspondence between histogram and spatial arrangement

Data Suitability for Volume Rendering

• MR Data: No such correspondence

